Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
EEG can be used to characterize the electrical activity of the cerebral cortex, but it is also susceptible to interference. Compared with the other artifacts, Electrooculogram (EOG) artifacts have a greater impact on EEG processing and are more difficult to remove. Here, we mainly compared the regression and ICA algorithms both based on the EOG channels for the effect of removing EOG artifacts in the Stroop experiment of methamphetamine addicts. From the perspective of time domain and power spectral density, the ICA algorithm based on the EOG channels is more effective. However, the regression algorithm based on the EOG channels is less complex, more time-saving, and more suitable for real-time tasks.Clinical Relevance- For clinical purposes, this research has a certain reference value for selecting appropriate methods of removing EOG artifacts when processing the EEG of methamphetamine addicts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9629660 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!