Seizure detection and seizure-type classification are best performed using intra-cranial or full-scalp electroencephalogram (EEG). In embedded wearable systems however, recordings from only a few electrodes are available, reducing the spatial resolution of the signals to a handful of timeseries at most. Taking this constraint into account, we tested the performance of multiple classifiers using a subset of the EEG recordings by selecting a single trace from the montage or performing a dimensionality reduction over each hemispherical space. Our results support that Random Forest (RF) classifiers lead most efficient and stable classification performances over Support Vector Machines (SVM). Interestingly, tracking the feature importances using permutation tests reveals that classical EEG spectrum power bands display different rankings across the classifiers: low frequencies (delta, theta) are most important for SVMs while higher frequencies (alpha, gamma) are more relevant for RF and Decision Trees. We reach up to 94.3% ∓ 5.3% accuracy in classifying absence from tonic-clonic seizures using state-of-art sampling methods for unbalanced datasets and leave-patients-out 3-fold cross-validation policy.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9630398DOI Listing

Publication Analysis

Top Keywords

features seizure
4
seizure classification
4
classification scalp
4
eeg
4
scalp eeg
4
eeg reduced
4
reduced single
4
single timeseries
4
timeseries seizure
4
seizure detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!