Electroencephalogram (EEG) is a crucial tool in the diagnosis and management of epilepsy. The process of analyzing EEG is time consuming leading to the development of seizure detection algorithms to aid its analysis. This approach is limited since it requires seizures to occur during monitoring periods and can often lead to misdiagnosis in cases where seizure occurrence is rare. For such cases, it has been shown that the interictal periods in EEG signals, which is the predominant state in long-term monitoring, can be useful for the diagnosis of epilepsy. This paper presents an algorithm, using the information in interictal periods, to discriminate between long-term EEG recordings of epilepsy patients and healthy subjects. It extracts several time and frequency-time domain features from the signals and classifies them using an ensemble classifier, achieving 100% sensitivity and 98.7% specificity in classifying 267 recordings from 105 subjects. The results demonstrate the feasibility of this approach to reliably identify EEG recordings of epilepsy subjects automatically which can be highly useful to facilitate screening and diagnosis of epilepsy, especially in those parts of the world where there is a lack of trained personnel for interpreting EEG signals.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9630782DOI Listing

Publication Analysis

Top Keywords

long-term eeg
8
interictal periods
8
eeg signals
8
diagnosis epilepsy
8
eeg recordings
8
recordings epilepsy
8
eeg
7
epilepsy
5
automatic identification
4
identification epileptic
4

Similar Publications

Schizophrenia (SZ) is a chronic neuropsychiatric disorder characterized by disturbances in cognitive, perceptual, social, emotional, and behavioral functions. The conventional SZ diagnosis relies on subjective assessments of individuals by psychiatrists, which can result in bias, prolonged procedures, and potentially false diagnoses. This emphasizes the crucial need for early detection and treatment of SZ to provide timely support and minimize long-term impacts.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) is the most common neurological adverse event among elderly patients undergoing surgery. POD is associated with an increased risk for postoperative complications, long-term cognitive decline, an increase in morbidity and mortality as well as extended hospital stays. Delirium prevention and treatment options are currently limited.

View Article and Find Full Text PDF

Epilepsy, a neurological disorder characterized by recurrent unprovoked seizures, significantly impacts patient quality of life. Current classification methods focus primarily on clinical observations and electroencephalography (EEG) analysis, often overlooking the underlying dynamics driving seizures. This study uses surface EEG data to identify seizure transitions using a dynamical systems-based framework-the taxonomy of seizure dynamotypes-previously examined only in invasive data.

View Article and Find Full Text PDF

Multimodal sleep staging network based on obstructive sleep apnea.

Front Comput Neurosci

December 2024

School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China.

Article Synopsis
  • Automatic sleep staging is important for diagnosing sleep disorders, but existing methods mainly focus on healthy populations, neglecting conditions like Obstructive Sleep Apnea (OSA).
  • The study introduces a new deep learning model called MSDC-SSNet, which utilizes electroencephalogram (EEG) and electrooculogram (EOG) signals to improve classification through advanced techniques like Transformer encoders and Multi-Scale Feature Extraction Modules.
  • The model demonstrated an 80.4% accuracy on OSA data and outperformed other leading methods, enhancing its practicality for diverse sleep populations.
View Article and Find Full Text PDF

Objective: To describe the lived experience of patients with NORSE and explore quality of life (QOL) for patients and their caregivers.

Background: NORSE is a rare condition characterized by refractory status epilepticus, often of unknown cause, in a previously neurologically healthy individual. Febrile infection-related epilepsy syndrome (FIRES) is a subset of NORSE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!