We proposed a sleep EEG-based brain age prediction model which showed higher accuracy than previous models. Six-channel EEG data were acquired for 6 hours sleep. We then converted the EEG data into 2D scalograms, which were subsequently inputted to DenseNet used to predict brain age. We then evaluated the association between brain aging acceleration and sleep disorders such as insomnia and OSA.The correlation between chronological age and expected brain age through the proposed brain age prediction model was 80% and the mean absolute error was 5.4 years. The proposed model revealed brain age increases in relation to the severity of sleep disorders.In this study, we demonstrate that the brain age estimated using the proposed model can be a biomarker that reflects changes in sleep and brain health due to various sleep disorders.Clinical Relevance-Proposed brain age index can be a single index that reflects the association of various sleep disorders and serve as a tool to diagnose individuals with sleep disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9631064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!