Isotopic labelling-based analysis elucidates biosynthesis pathways in Saccharomyces cerevisiae for Melatonin, Serotonin and Hydroxytyrosol formation.

Food Chem

Área de Nutrición y Bromatología, Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor Garcia Gonzalez, 2, 41012 Sevilla, Spain. Electronic address:

Published: April 2022

Yeasts can synthetise bioactive compounds such as Melatonin (MEL), Serotonin (SER) and Hydroxytyrosol (HT). Deciphering the mechanisms involved in their formation can lead to exploit this fact to increase the bioactive potential of fermented beverages. Quantitative analysis using labelled compounds, 15-N2 l-tryptophan and 13-C tyrosine, allowed tracking the formation of the above-mentioned bioactive compounds during the alcoholic fermentation of synthetic must by two different Saccharomyces cerevisiae strains. Labelled and unlabelled MEL, SER and HT were undoubtedly identified and quantified by High Resolution Mass Spectrometry (HRMS). Our results prove that there are at least two pathways involved in MEL biosynthesis by yeast. One starts with tryptophan as precursor being known for the vertebrates' pathway. Additionally, MEL is produced from SER which in turn is consistent with the plants' biosynthesis pathway. Concerning HT, it can be formed both from labelled tyrosine and from intermediates of the Erlich pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.131742DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
bioactive compounds
8
isotopic labelling-based
4
labelling-based analysis
4
analysis elucidates
4
elucidates biosynthesis
4
biosynthesis pathways
4
pathways saccharomyces
4
cerevisiae melatonin
4
melatonin serotonin
4

Similar Publications

Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.

View Article and Find Full Text PDF

Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems.

View Article and Find Full Text PDF

Systematic molecular dissection of key intermediates in xanthones biosynthesis in Cudrania tricuspidata and establishment of a viable heterologous expression system.

Plant Physiol Biochem

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. Electronic address:

The major phytochemicals in the roots of Cudrania tricuspidata are prenylated xanthones, exhibiting significant structural diversity and bioactive properties, such as anti-inflammatory, antioxidative, and antitumor effects. The biosynthetic pathways of these compounds have not yet been resolved, limiting their production through synthetic biology. In this study, benzoyl-coenzyme A (CoA) ligase (BZL), benzophenone synthase (BPS), and benzophenone 3'-hydroxylase (B3'H) transcripts involved in the biosynthesis of xanthone were cloned and characterized from C.

View Article and Find Full Text PDF

Engineering yeast to produce fraxetin from ferulic acid and lignin.

Appl Microbiol Biotechnol

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.

View Article and Find Full Text PDF

Competitive fitness is a fundamental concept in evolutionary biology that captures the ability of organisms to survive, reproduce, and compete for resources in their environment. Competitive fitness is typically assessed in the lab by growing two or more competitors together and measuring the frequency of each at multiple time points. Traditional microbial competitive fitness assays are labor intensive and involve plating on solid medium and counting colonies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!