FoxO transcription factors (FoxOs) have recently been shown to protect against chondrocyte dysfunction and modulate cartilage homeostasis in osteoarthritis. The mechanism underlying of FoxOs regulate chondrocyte differentiation remains unknown. Runt related transcription factor 1 (RUNX1) mediated both chondrocyte and osteoblast differentiation. Our data showed that FoxO3a and RUNX1 are co-expressed in ATDC5 cells and undifferentiated mesenchyme cells and have similar high levels in chondrocytes undergoing transition from proliferation to hypertrophy. Overexpression of FoxO3a in ATDC5 cells or mouse mesenchymal cells resulted in a potent induction of the chondrocyte differentiation markers. Knockdown FoxO3a or RUNX1 potently inhibits the expressions of chondrocyte differentiation markers, including Sox9, Aggrecan, Col2, and hypertrophic chondrocyte markers including RUNX2, ColX, MMP13 and ADAMTs-5 in ATDC5 cells. Co-immunoprecipitation showed that FoxO3a binds the transcriptional regulator RUNX1. Immunohistochemistry showed that FoxO3a and RUNX1 are highly co-expressed in the proliferative chondrocytes of the growth plates in the hind limbs of newborn mice. Collectively, we revealed that FoxO3a cooperated with RUNX1 promoted chondrocyte differentiation through enhancing both early chondrogenesis and terminal hypertrophic of the chondrogenic progenitor cells, indicating FoxO3a interacting with RUNX1 may be a therapeutic target for the treatment of osteoarthritis and other bone diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.12.008 | DOI Listing |
Histochem Cell Biol
January 2025
Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).
View Article and Find Full Text PDFCell Signal
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:
Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
January 2025
Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
Introduction: Osteoarthritis (OA) is a degenerative joint disease that can affect the many tissues of the joint. There are no officially recognized disease-modifying therapies for clinical use at this time probably due to a lack of complete comprehension of the pathogenesis of the disease. In recent years, emerging regenerative therapy and treatments with stem cells both undifferentiated and differentiated cells have gained much attention as they can efficiently promote tissue repair and regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!