This review gives a proper dedicated understanding of the contamination level, sources, and biological dangers related with different classes of antibiotics in consumable water. The literature on the adsorption of antibiotics is relatively uncommon and developments are still under progression, especially for adsorbents other than activated carbon. Also, adsorption technique has already been applied vastly for water treatment. Notwithstanding significant progressions, designed natural wastewater treatment frameworks are just bearably effective (48-77%) in the expulsion of antibiotics. Hence, the compilation of available literature especially for antibiotic adsorption was much needed. Moreover, the conventional adsorbents have some limitations of their own. In this study, the main focus was laid on unconventional adsorbents such as Biochar, Biopolymers, Carbon Nanotubes, Clays, Metal-Organic Frameworks, Microalgae and some miscellaneous adsorbents. The mechanism of adsorption by the unconventional adsorbents includes electrostatic interactions, π-π bonding, weak Van der Waal forces, H-bonding and surface complexation, which was similar to that of conventional adsorbents and hence these unconventional adsorbents can easily replace the costlier conventional adsorbents with even better adsorption efficiency. This paper also briefly discussed the thermodynamics, adsorption equilibrium; isotherm and kinetics of adsorption. This review paper seizes the critical advances of adsorption phenomenon at various interfaces and lays the foundation for current scenario associated with further progress. Besides, this study would help in understanding the antibiotic adsorption, cost estimation and future goals that will attract the young the researchers of this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127946 | DOI Listing |
Langmuir
January 2025
Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2BX, United Kingdom.
Engine deposits can reduce performance and increase emissions, particularly for modern direct-injection fuel delivery systems. Surfactants known as deposit control additives (DCAs) adsorb and self-assemble on the surface of deposit precursors to keep them suspended in the fuel. Here, we show how molecular simulations can be used to virtually screen the ability of surfactants to bind to polyaromatic hydrocarbons, comprising a major class of carbonaceous deposits.
View Article and Find Full Text PDFBioorg Chem
January 2025
CSIR- Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
The expanding prevalence of microbial resistance to conventional treatments has triggered a race to develop alternative/improved strategies to combat drug-resistant microorganisms in an efficient manner. Here, the lethal impact of the biosynthesized gold nanoparticles (AuNPs) against multi-drug resistant (MDR) bacteria has been elucidated. AuNPs, synthesized from the extracts of the fruit, leaf and peel of the Citrus maxima plant, were physicochemically characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), electron microscopy and spectroscopic techniques not only confirmed the production of AuNPs of size below 100 nm but also identified the phytochemicals adsorbed onto the surface of NPs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Laboratory of Zhongyuan, Luohe, 462000, Henan Province, PR China.
Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China.
Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!