Toxic metal(loid) (TM) soil pollution at large-scale non-ferrous metal smelting contaminated sites is of great concern in China, but there are no detailed reports relating to them. A comprehensive study was conducted to determine contamination characteristics and horizontal and vertical spatial distribution patterns of soils at an abandoned zinc smelting site in Southern China. The spatial distribution of TMs revealed that soil environmental quality was seriously threatened, with Cd, Zn, As, Pb and Hg being the main contaminants present. The distribution of all TMs showed strong spatial heterogeneity and were expressed as a "patchy aggregation" pattern due to strong anthropogenic and production activities. Vertical migration of TMs indicated that the pollutants were mainly concentrated in the fill layers. Different contaminants had various migration depths, with migration occurring as: Cd > Hg > As > Zn > Pb> Cu> Mn> Sb. Analysis of their spatial variability showed that As, Pb, Cd and Hg had strong regional spatial variability. This research provides a new approach to comprehensively analyze TM pollution characteristics of non-ferrous smelting sites. It provides valuable information for guiding post-remediation strategies at abandoned non-ferrous metal smelting sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127970DOI Listing

Publication Analysis

Top Keywords

spatial distribution
12
abandoned zinc
8
zinc smelting
8
smelting site
8
site southern
8
southern china
8
non-ferrous metal
8
metal smelting
8
distribution tms
8
spatial variability
8

Similar Publications

MITIGATING OVER-SATURATED FLUORESCENCE IMAGES THROUGH A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK.

Proc IEEE Int Symp Biomed Imaging

May 2024

Department of Electrical and Computer Engineering, Nashville, TN, USA.

Multiplex immunofluorescence (MxIF) imaging is a critical tool in biomedical research, offering detailed insights into cell composition and spatial context. As an example, DAPI staining identifies cell nuclei, while CD20 staining helps segment cell membranes in MxIF. However, a persistent challenge in MxIF is saturation artifacts, which hinder single-cell level analysis in areas with over-saturated pixels.

View Article and Find Full Text PDF

Many sharks, rays and skates are highly threatened and vulnerable to overexploitation, as such reliable monitoring of elasmobranchs is key to effective management and conservation. The mobile and elusive nature of these species makes monitoring challenging, particularly in temperate waters with low visibility. Environmental DNA (eDNA) methods present an opportunity to study these species in the absence of visual identification or invasive techniques.

View Article and Find Full Text PDF

Incorporating ecological connectivity into spatial conservation planning is increasingly recognized as a key strategy to facilitate species movements, especially under changing environmental conditions. However, obtaining connectivity data is challenging, especially in the marine realm. Sea currents are essential for exploring marine structural connectivity, but transforming sea current data into spatial connectivity matrices involves complex and resource-intensive processing steps to ensure accuracy and usability.

View Article and Find Full Text PDF

Deep water vetulicolians from the lower Cambrian of China.

PeerJ

January 2025

Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.

Vetulicolians are an enigmatic phylum of extinct Cambrian marine invertebrates. They are particularly diverse in the Chengjiang Biota of China, but representatives have been recovered from other Fossil-Lagerstätten (Cambrian Stage 3-Drumian). These organisms are characterized by a bipartite body, which is split into an anterior section and a posterior segmented section connected by a narrow constriction.

View Article and Find Full Text PDF

The "oblique effect" refers to the reduced visual performance for stimuli presented at oblique orientations compared to those at cardinal orientations. In the cortex, neurons that respond to specific orientations are organized into orientation columns. This raises the question: Are the orientation signals in the iso-orientation columns associated with cardinal orientations the same as those in the iso-orientation columns associated with oblique orientations, and is this signal influenced by experience? To explore this, iso-orientation columns in visual area 18 were examined using optical imaging techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!