Role of notch signaling pathway in Muc5ac secretion induced by atmospheric PM in rats.

Ecotoxicol Environ Saf

Department of Pediatric Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China. Electronic address:

Published: January 2022

AI Article Synopsis

Article Abstract

Background: The secretion of Muc5ac is closely related to the pathogenesis, treatment and prognosis of bronchial asthma. Atmospheric PM entered the airway can irritate and corrode the bronchial wall, affecting the expression and secretion of Muc5ac. However, the underlying mechanism is not clear. In this study, we investigated the role of the Notch signaling pathway in mucin section induced by atmospheric PM in rats.

Methods: Fifty rats were divided randomly into five groups: the control received physiological saline; the health, health Notch signaling pathway inhibition and asthma, asthma Notch signaling pathway inhibition groups received 7.5 mg/kg PM. PM or saline was instilled into the trachea at 2-day intervals for two doses. IL-1β, TNF-α and Muc5ac levels were detected by ELISA. The mRNA expression levels of Notch signaling pathway genes were detected by real time PCR. The levels of Notch signaling pathway protein were detected by western blot.

Results: The levels of Muc5ac in the lungs and TNF-α in serum of asthmatic rats exposed to PM2.5 was the highest, and when Notch signaling pathway was inhibited, the levels of Muc5ac in the lungs and tracheas and TNF-α in serum of asthmatic rats exposed to PM2.5 was significantly decreased. Hes1 mRNA expression level in trachea was the lowest in the asthma inhibition group; and inhibiting the Notch signaling pathway could decrease the mRNA and protein levels of Hes1 in rats' lung. The mRNA relative levels of Notch3 and Notch4 in rats' trachea, the protein levels of Notch3 in rats' lung, and the mRNA relative levels of Jagged1 and Jaggeed2 in rats' lung were more consist with the changes of Muc5ac, TNF-α and Hes1.

Conclusion: Notch signaling pathway played an important role in Muc5ac secretion induced by atmospheric PM of the asthmatic rats' airways. Jagged1 and Jagged2 interacting with Notch3 and Notch4 regulated the expression of Hes1, further regulated TNF-α in the process of PM inducing the secretion of Muc5ac.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.113052DOI Listing

Publication Analysis

Top Keywords

notch signaling
36
signaling pathway
36
induced atmospheric
12
secretion muc5ac
12
rats' lung
12
signaling
9
pathway
9
muc5ac
9
levels
9
role notch
8

Similar Publications

The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).

View Article and Find Full Text PDF

Molecular Mechanisms and Pathways of Mesenchymal Stem Cell-mediated Therapy in Brain Cancer.

Curr Stem Cell Res Ther

January 2025

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India.

Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach in the treatment of brain cancer due to their unique biological properties, including their ability to home tumor sites, modulate the tumor microenvironment, and exert anti-tumor effects. This review delves into the molecular mechanisms and pathways underlying MSC-mediated therapy in brain cancer. We explore the various signalling pathways activated by MSCs that contribute to their therapeutic efficacy, such as the PI3K/Akt, Wnt/β-catenin, and Notch pathways.

View Article and Find Full Text PDF

Gualou Guizhi Granule inhibits microglia-mediated neuroinflammation to protect against neuronal apoptosis and .

Front Immunol

January 2025

Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.

Object: Neuroinflammation mediated by microglia has emerged as a critical factor in ischemic stroke and neuronal damage. Gualou Guizhi Granule (GLGZG) has been shown to suppress inflammation in lipopolysaccharide (LPS)-activated microglia, though the underlying mechanisms and its protective effects against neuronal apoptosis remain unclear. This study aims to investigate how GLGZG regulates the Notch signaling pathway in microglia to reduce neuroinflammation and protect neurons from apoptosis.

View Article and Find Full Text PDF

Hydroxytyrosol protects isoproterenol-induced myocardial infarction through activating notch signaling.

Iran J Basic Med Sci

January 2025

Department of Medical Pharmacology, Faculty of Medicine, Adıyaman University, Adıyaman, 02040, Turkey.

Objectives: In this investigation, the protective effects of hydroxytyrosol (HT) administered prior to myocardial infarction in rats were examined, with a particular focus on its potential roles within the Notch pathway.

Materials And Methods: The animals were categorized into seven groups (n=7): control, myocardial infarction (MI) 6 hr, MI 24 hr, MI 7 day, MI+HT 6 hr, MI+HT 24 hr, MI+HT 7 day. In order to create infarction, the rats received a subcutaneous injection of isoproterenol at a dose of 200 mg/kg.

View Article and Find Full Text PDF

Regulatory Mechanisms of Signaling Pathways in Liver Cancer Treatment with Traditional Chinese Medicine.

J Ethnopharmacol

January 2025

Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine,100007; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine,100029.

Ethnopharmacological Relevance: Traditional Chinese Medicine (TCM), as a longstanding therapeutic approach, offers unique advantages and potential in the treatment of liver cancer. Recent studies have highlighted its role in preventing liver cancer progression by modulating key signaling pathways. TCM's multi-component, multi-target, and multi-pathway mechanisms of action have garnered significant attention in the medical community for their ability to address complex diseases like liver cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!