The toxic metal ions leaching and metal nanoparticles agglomeration were the critical issues for metal-based carbon materials during the peroxymonosulfate (PMS) activation processes. Herein, a facile strategy was first proposed that zero-dimensional Fe/FeC nanoparticles were embedded in one-dimensional N-doped carbon nanofiber (Fe/FeC@NCNF) to solve the above challenges. The as-obtained Fe/FeC@NCNF-800 possessed a low E value (11.7 kJ/mol) and exhibited high activity for activating PMS to degrade tetracycline (TC) in a wide range of pH 3-11. As expected, the iron ions leaching concentration of Fe/FeC@NCNF-800 was very low (0.082 mg/L). Meanwhile, the Fe/FeC@NCNF-800 was easily recovered from the reaction solution due to its magnetic properties. Both superoxide radicals (O) and non-radical of singlet oxygen (O) were the primary reactive oxygen species (ROS) in the Fe/FeC@NCNF-800/PMS system via quenching tests and electron spin resonance spectroscopy (ESR). The catalytic mechanism suggested that the Fe/FeC and graphitic N were the main active sites in the Fe/FeC@NCNF-800 for PMS activation. This work provided a facile method for the preparation of Fe-based carbon materials with high catalytic ability, low metal leaching and easy recycling, showing a broad prospect for environmental applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.11.178 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China. Electronic address:
In this study, carbon dots doped with silver and nitrogen (Ag,N-CDs) were synthesized and their application in chemiluminescence (CL) was investigated using the potassium ferricyanide/hydrogen peroxide (KFe(CN)/HO) reaction. Theoretical calculations reveal that Ag doping facilitates a lower excitation energy. The experimental conditions influencing the CL reaction were examined and optimized.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:
Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, PR China. Electronic address:
Organophosphorus pesticides (OPPs) severely pollute various environmental water due to their excessive use, and it is extremely urgent to develop novel adsorbents with high adsorption capacities, rapid removal rate and easily recovery for the removal of OPPs. In this study, defect-rich Co/N-doped hierarchically porous carbons (Co/N-DHPCs) were constructed by pyrolyzing acid-etched ZIF-67 precursor. The developed Co/N-DHPCs possessed rich defects, well-developed hierarchical porous structure, high specific surface area and excellent magnetic property, and exhibited large adsorption capacities of 103.
View Article and Find Full Text PDFChemistry
January 2025
Nanjing University of Aeronautics and Astronautics, School of Materials Science and Engineering, 29 Yudao St., 210016, Nanjing, CHINA.
As a potential alternative to next-generation LIBs, carbonous materials have garnered significant attention as anode materials for potassium-ion batteries due to their low cost and environmental friendliness. However, carbonaceous materials cannot fulfill the demand of anode for PIBs, due to volume expansion and poor stability during charging/discharging process. It is well-known that N doping can provide active sites for K-storage, and expand the layer distance between graphite layers.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!