Beamforming is a popular method for functional source reconstruction using magnetoencephalography (MEG) and electroencephalography (EEG) data. Beamformers, which were first proposed for MEG more than two decades ago, have since been applied in hundreds of studies, demonstrating that they are a versatile and robust tool for neuroscience. However, certain characteristics of beamformers remain somewhat elusive and there currently does not exist a unified documentation of the mathematical underpinnings and computational subtleties of beamformers as implemented in the most widely used academic open source software packages for MEG analysis (Brainstorm, FieldTrip, MNE, and SPM). Here, we provide such documentation that aims at providing the mathematical background of beamforming and unifying the terminology. Beamformer implementations are compared across toolboxes and pitfalls of beamforming analyses are discussed. Specifically, we provide details on handling rank deficient covariance matrices, prewhitening, the rank reduction of forward fields, and on the combination of heterogeneous sensor types, such as magnetometers and gradiometers. The overall aim of this paper is to contribute to contemporary efforts towards higher levels of computational transparency in functional neuroimaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2021.118789DOI Listing

Publication Analysis

Top Keywords

source reconstruction
8
unified view
4
beamformers
4
view beamformers
4
beamformers m/eeg
4
m/eeg source
4
reconstruction beamforming
4
beamforming popular
4
popular method
4
method functional
4

Similar Publications

Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids.

View Article and Find Full Text PDF

The scientific establishment of the Ecological Security Pattern (ESP) is crucial for fostering the synergistic development of ecological and recreational functions, thereby enhancing urban ecological protection, recreational development, and sustainable growth. This study aimed to propose a novel method of constructing ESP considering both ecological and recreational functions, and to reconstruct ESP by weighing the relationship between ecological protection and recreational development. Utilizing Fuzhou City as a case study, a comprehensive application of methodologies including Morphological Spatial Pattern Analysis (MSPA), landscape connectivity analysis, ArcGIS spatial analysis, social network analysis (SNA), and circuit theory is employed to develop both the ESP and the Recreational Spatial Pattern (RSP).

View Article and Find Full Text PDF

Tire wear particles (TWP) are one of the main sources of microplastic (MP) pollution in the marine environment, causing adverse effects on marine life and attracting increasing attention. This study aimed to investigate the chemical composition of TWP (particles and leachate) and their toxic effects on Brachionus plicatilis. The results showed that Zn and acenaphthene were the most frequently detected compounds in the three TWP treatments.

View Article and Find Full Text PDF

Deposition history of polycyclic aromatic hydrocarbons in tibetan lakes indicate the effectiveness of protected area establishment.

J Environ Manage

January 2025

School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.

The effectiveness of protected areas in mitigating human impacts remains uncertain due to limited in-situ data; however, atmospheric micropollutant deposition in alpine lakes may provide a quantitative approach to evaluate anthropogenic pressures and threats. In this study, the temporal changes of polycyclic aromatic hydrocarbons (PAHs) inside/outside the Siling Co protected area, Tibet were reconstructed. The varying anthropogenic impact history suggested that, unlike the dominance of residential activities (i.

View Article and Find Full Text PDF

4D light sheet imaging, computational reconstruction, and cell tracking in mouse embryos.

STAR Protoc

January 2025

Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

As light sheet fluorescence microscopy (LSFM) becomes widely available, reconstruction of time-lapse imaging will further our understanding of complex biological processes at cellular resolution. Here, we present a comprehensive workflow for in toto capture, processing, and analysis of multi-view LSFM experiments using the ex vivo mouse embryo as a model system of development. Our protocol describes imaging on a commercial LSFM instrument followed by computational analysis in discrete segments, using open-source software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!