Quantitative assessment of the effects of climate, vegetation, soil and groundwater on soil moisture spatiotemporal variability in the Mongolian Plateau.

Sci Total Environ

College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China; Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot 010022, China.

Published: February 2022

Soil moisture (SM) is a key parameter regulating the hydrothermal balance of global terrestrial ecosystems and plays an important role in local ecological environment, particularly in arid and semiarid areas. However, current studies have so far obtained insufficient knowledge of SM spatiotemporal variability and its primary control factors, which limits our understanding of the feedback effects of SM on surface vegetation and hydrothermal activity. Here, we chose the ecologically fragile Mongolian Plateau (MP) as the study area to quantitatively reveal the soil moisture spatiotemporal variability (SMSTV) and the influence of control factors (climate, vegetation, soil and groundwater) with the help of empirical orthogonal functions (EOFs) and geographical detector models. The results indicated that a significant trend of decreasing SM and one dominant spatial structure (EOF1) of SM was found in the MP from 1982 to 2019, which explained over 54% of the spatial variability in SM, and as the soil depth increased, the EOF1 interpretation capacity increased. In addition, EOF1 is high in the north and east and low in the south and west of the MP and that vegetation cover is also relatively greater in the high-value areas. Overall, groundwater has the greatest influence on SMSTV in the MP (q = 0.89); however, precipitation and potential evapotranspiration remain the main control factors for SMSTV for different ecological zones, while the influence of vegetation elements (NDVI and GPP) cannot be ignored, and soil textures (clay, sand, silt) have the least influence. Meanwhile, SMSTV is explained to a greater extent by the interaction of the factors rather than by a single factor. However, there are differences in the influence mechanisms of each factor on SMSTV. This study provides strong evidence that meteorological forcing is not the only factor that dominates SMSTV and that the dominant factors may vary considerably between ecological zones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.152198DOI Listing

Publication Analysis

Top Keywords

soil moisture
12
spatiotemporal variability
12
control factors
12
climate vegetation
8
vegetation soil
8
soil groundwater
8
moisture spatiotemporal
8
mongolian plateau
8
influence smstv
8
ecological zones
8

Similar Publications

Wi-Fi signal for soil moisture sensing.

Environ Monit Assess

December 2024

Division of Soil Science, Institute of Geoecology, TU Braunschweig, Brunswick, Germany.

Measuring soil moisture is essential in various scientific and engineering disciplines. Over recent decades, numerous technologies have been employed for in situ monitoring of soil moisture. Currently, dielectric-based sensors are the most popular measurement technology and provide acceptable accuracy for various measurement purposes.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Extreme climate events, particularly droughts, pose significant threats to vegetation, severely impacting ecosystem functionality and resilience. However, the limited temporal resolution of current satellite data hinders accurate monitoring of vegetation's diurnal responses to these events. To address this challenge, we leveraged the advanced satellite ECOSTRESS, combining its high-resolution evapotranspiration (ET) data with a LightGBM model to generate the hourly continuous ECOSTRESS-based ET (HC-ET) for the middle and lower reaches of the Yangtze River Basin (YRB) from 2015 to 2022.

View Article and Find Full Text PDF

Rationale: The analysis of natural abundance isotopes in biogenic NO molecules provides valuable insights into the nature of their precursors and their role in biogeochemical cycles. However, current methodologies (for example, the isotopocule map approach) face limitations, as they only enable the estimation of combined contributions from multiple processes at once rather than discriminating individual sources. This study aimed to overcome this challenge by developing a novel methodology for the partitioning of NO sources in soil, combining natural abundance isotopes and the use of a N tracer (N Gas Flux method) in parallel incubations.

View Article and Find Full Text PDF

Enhancing the water use efficiency model predictions for Platycladus orientalis and Quercus variabilis: Integrating the dynamics of carbon dioxide concentration and soil water availability.

Sci Total Environ

December 2024

Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, Beijing, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China.

Water use efficiency (WUE) is a tracer for plants on the trade-off exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere; therefore, a dynamic investigation of WUE and its driving factors will be of great significance to optimize water and carbon fitness and predict the plants' response to climate change. In our study, a modified water use efficiency model was proposed to improve the quantification of carbon and water processes by adding a photosynthesis-g simulation dependent on CO concentration and soil moisture to the photosynthetic transpiration model (noted as SMPTSB model). Actual measured water use efficiencies were respectively obtained by the gas exchange measurements (WUE) and the δC that defined as the carbon-heavy isotope of the water-soluble compound in leaves (WUE) of three-year tree saplings of Platycladus orientalis (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!