The UV-induced, C3H fibrosarcoma, 1591, expresses at least three unique MHC class I antigens not found on normal C3H tissue. Here we report the complete DNA sequence of the three novel class I genes encoding these molecules, and describe in detail the recognition of the individual products by tumor-reactive and allospecific CTL. Remarkably, although C3H does not appear to express H-2L locus information, this C3H tumor expresses two distinct antigens, termed A149 and A166, which are extremely homologous to each other and to the H-2Ld antigen from BALB/c. The gene encoding the third novel class I antigen from 1591, A216, is quite homologous to H-2Kk) throughout its 3' end. Since all three of these genes account for polymorphic restriction fragments not found in C3H, it is likely that they were derived by recombination from the endogenous class I genes of C3H. The DNA sequence homology of A149, A166, and H-2Ld is especially significant given the functional conservation observed between the products of these genes. Limited sequence substitutions appear to correlate with some of the discrete serological differences observed between these molecules. In addition, both A149 and A166 crossreact, but to differing extents, with H-2Ld at the level of T cell recognition. Our results are consistent with the view that CTL recognize complex conformational determinants on class I molecules, but extend previous observations by comparing a set of antigens with discrete and overlapping structural and functional differences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188386PMC
http://dx.doi.org/10.1084/jem.164.3.794DOI Listing

Publication Analysis

Top Keywords

a149 a166
12
three novel
8
mhc class
8
class antigens
8
dna sequence
8
novel class
8
class genes
8
c3h
7
class
6
structure function
4

Similar Publications

We have biochemically characterized by 2D (two-dimensional) electrophoresis three novel class I molecules called A166, A149 and A216 expressed by 1591, a UV-induced fibrosarcoma, and have compared them to class I molecules expressed by mice of the H-2q and H-2s haplotypes. A166 and A149 are very similar if not identical to Dq and Lq respectively. We have shown, using HPLC (high-pressure liquid chromatography) tryptic peptide mapping, that the expression of A166 is approximately three fold greater than A149, reminiscent of Dd compared to Ld.

View Article and Find Full Text PDF

Previously, we cloned and sequenced the three novel MHC class I genes expressed by the C3H UV fibrosarcoma, 1591. We have extended the analysis of the polymorphic nature of these genes relative to the C3H strain. Scattered nucleotide differences among the tumor genes as compared with the C3H H-2 and Qa sequences make it highly unlikely that the novel tumor genes were generated by recombination between endogenous C3H sequences.

View Article and Find Full Text PDF

Two phenomena appear to distinguish the D region class I genes from those in the K region in the murine MHC: (a) haplotype disparity in the number of expressed D region class I molecules has been observed; and (b) clines of closely related D region class I molecules among and within mice of different H-2 haplotypes can be defined. Both of these observations have been based on serological and peptide mapping analyses of these molecules. Recent reports using molecular biological approaches have corroborated these findings.

View Article and Find Full Text PDF

The UV-induced, C3H fibrosarcoma, 1591, expresses at least three unique MHC class I antigens not found on normal C3H tissue. Here we report the complete DNA sequence of the three novel class I genes encoding these molecules, and describe in detail the recognition of the individual products by tumor-reactive and allospecific CTL. Remarkably, although C3H does not appear to express H-2L locus information, this C3H tumor expresses two distinct antigens, termed A149 and A166, which are extremely homologous to each other and to the H-2Ld antigen from BALB/c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!