Sensing and perception is generally a challenging aspect of decision-making. In the nanoscale, however, these processes face further complications due to the physical limitations of devising the nanomachines with more limited perception, more noise, and fewer sensors. There is, hence, higher dependence on swarm sensing and perception of many nanomachines. Here, taking hardware and software bioinspiration, we propose Chemo-Mechanical Cancer-Inspired Swarm Perception (CMCISP) based on online nano fuzzy haptic feedback for early disease diagnosis and targeted therapy. Particularly, we use epithelial cancer cell's scaffold as a carrier, its properties as a distributed perception mechanism, and its motility patterns as the swarm movements such as anti-durotaxis, blebbing, and chemotaxis. We implement the in-silico model of CMCISP using a hybrid computational framework of the cellular Potts model, swarm intelligence, and fuzzy decision-making. Furthermore, the target convergence of CMCISP is analytically proved using swarm control theory. Finally, several numerical experiments and validations for cancer target therapy, cellular stiffness measurement, anti-durotaxis movement, and robustness analysis are also conducted and compared with a mathematical chemotherapy model and authors' previous works on targeted therapy. Results show improvements of up to 57.49% in early cancer detection, 26.64% in target convergence, and 68.01% in increased normoxic cell density. The study also reveals the strategy's robustness to environmental/sensory noise by applying six SNR levels of 0, 2, 5, 10, 30, and 50 dB, with an average diagnosis error of only 0.98% and at most 2.51%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2021.3130207 | DOI Listing |
J Integr Neurosci
January 2025
Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China.
Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.
Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.
Pharmaceutics
January 2025
BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. : After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis.
View Article and Find Full Text PDFPharmaceutics
December 2024
Division of Pulmonology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.
Lung cancer remains a major global health problem because of its high cancer-related mortality rate despite advances in therapeutic approaches. Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, is more amenable to surgical intervention in its early stages. However, the prognosis for advanced NSCLC remains poor, owing to limited treatment options.
View Article and Find Full Text PDFPlants (Basel)
January 2025
KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
L. has exhibited various pharmacological effects, yet its anticancer activities against colorectal cancer (CRC) and underlying molecular mechanisms remain unclear. This study investigated the anticancer properties of an ethanol extract of L.
View Article and Find Full Text PDFMolecules
January 2025
Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
Trifolirhizin is an important flavonoid glycoside reported from the roots of medicinal plants such as Astragalus membranaceus, Sophora tonkinensis, Ononis vaginalis, Euchresta formosana, Sophora Subprostrate, Ononis spinose, and Sophora flavescens. It is considered one of the important constituents responsible for the various medicinal properties of these medicinal plants. Studies have revealed the multiple pharmacological properties of trifolirhizin: anti-inflammatory, antioxidant, antibacterial, anti-ulcerative colitis, antiasthma, hepatoprotective, osteogenic, skin-whitening, wound-healing, and anticancer (against various types of cancers).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!