During the initiation of adaptive immune responses, millions of lymphocytes must be scanned to find the few cognate clones. The activation mechanisms of CD4 T cells have been extensively studied, but the cellular mechanisms that drive selection of cognate clones are not completely understood. Here, we show that recently homed naïve polyclonal CD4 T cells are temporarily retained before leaving the lymph node. This stop-and-go traffic of CD4 T cells provides an adequate time window for efficient scanning and timely priming of antigen-specific cognate clones. CD301b DCs, a major subset of migratory cDC2 cells, localize to the areas around high endothelial venules, where they retain incoming polyclonal CD4 T cells through MHCII-dependent but antigen-independent mechanisms, while concurrently providing cognate stimuli for priming. These results indicate that CD301b DCs function as an immunological “display window” for CD4 T cells to efficiently scan their antigen specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832498PMC
http://dx.doi.org/10.1126/sciimmunol.abg0336DOI Listing

Publication Analysis

Top Keywords

cd4 cells
20
cognate clones
12
migratory cdc2
8
cdc2 cells
8
lymph node
8
polyclonal cd4
8
cd301b dcs
8
cells
7
cd4
5
effective cd4
4

Similar Publications

Circulating MicroRNAs Related to Arterial Stiffness in Adults with HIV Infection.

Viruses

December 2024

1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.

People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.

View Article and Find Full Text PDF

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.

View Article and Find Full Text PDF

Introduction: Variants of COVID-19 are responsible for 700 million infections and 7 million deaths worldwide. Vaccinations have high efficiency in preventing infection and secondary benefits of reducing COVID-19 hospital admissions, attenuating disease severity and duration of illness. Conflicting reports were published regarding COVID-19 among PLWH.

View Article and Find Full Text PDF

Background/objectives: New SARS-CoV-2 variants are continuously emerging, making it essential to assess the efficacy of vaccine-induced immune protection. Limited information is available regarding T cell responses to BA.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!