The development of knockout mutants and expression variants are critical for understanding genotype-phenotype relationships. However, advances in these techniques in gram-positive actinobacteria have stagnated over the last decade. Actinobacteria in the genus are composed of diverse crop pathogens that cause a variety of wilt and cankering diseases. Here, we present a suite of tools for genetic manipulation in the tomato pathogen including a markerless deletion system, an integrative plasmid, and an R package for identification of permissive sites for plasmid integration. The vector pSelAct-KO is a recombination-based, markerless knockout system that uses dual selection to engineer seamless deletions of a region of interest, providing opportunities for repeated higher-order genetic knockouts. The efficacy of pSelAct-KO was demonstrated in and was confirmed using whole-genome sequencing. We developed permissR, an R package to identify permissive sites for chromosomal integration, which can be used in conjunction with pSelAct-Express, a nonreplicating integrative plasmid that enables recombination into a permissive genomic location. Expression of enhanced green fluorescent protein by pSelAct-Express was verified in two candidate permissive regions predicted by permissR in . These molecular tools are essential advances for investigating gram-positive actinobacteria, particularly for important pathogens in the genus.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-07-21-0171-TADOI Listing

Publication Analysis

Top Keywords

integrative plasmid
12
markerless deletion
8
gram-positive actinobacteria
8
permissive sites
8
permissive
5
genetic toolkit
4
toolkit investigating
4
investigating species
4
species markerless
4
deletion permissive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!