A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accelerated Simulations of Molecular Systems through Learning of Effective Dynamics. | LitMetric

Accelerated Simulations of Molecular Systems through Learning of Effective Dynamics.

J Chem Theory Comput

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Published: January 2022

Simulations are vital for understanding and predicting the evolution of complex molecular systems. However, despite advances in algorithms and special purpose hardware, accessing the time scales necessary to capture the structural evolution of biomolecules remains a daunting task. In this work, we present a novel framework to advance simulation time scales by up to 3 orders of magnitude by learning the effective dynamics (LED) of molecular systems. LED augments the equation-free methodology by employing a probabilistic mapping between coarse and fine scales using mixture density network (MDN) autoencoders and evolves the non-Markovian latent dynamics using long short-term memory MDNs. We demonstrate the effectiveness of LED in the Müller-Brown potential, the Trp cage protein, and the alanine dipeptide. LED identifies explainable reduced-order representations, i.e., collective variables, and can generate, at any instant, all-atom molecular trajectories consistent with the collective variables. We believe that the proposed framework provides a dramatic increase to simulation capabilities and opens new horizons for the effective modeling of complex molecular systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.1c00809DOI Listing

Publication Analysis

Top Keywords

molecular systems
16
learning effective
8
effective dynamics
8
complex molecular
8
time scales
8
collective variables
8
molecular
5
accelerated simulations
4
simulations molecular
4
systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!