Herein we describe the synthesis and characterization of the first platinum(IV) metal-organic cage [(MePt)(byp)](OTf) (), in which the organometallic moieties trimethylplatinum(IV) (PtMe) occupied the corners of a cubane structure and 4,4'-bipyridine ligands used as linkers. The first-principles density functional theory calculations showed that the highest occupied molecular orbitals were localized on the PtMe moieties, while the lowest unoccupied molecular orbitals were distributed on the organic linkers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c02803DOI Listing

Publication Analysis

Top Keywords

molecular orbitals
8
metal-organic cubane
4
cubane cage
4
cage trimethylplatinumiv
4
trimethylplatinumiv vertices
4
vertices describe
4
describe synthesis
4
synthesis characterization
4
characterization platinumiv
4
platinumiv metal-organic
4

Similar Publications

The phase estimation algorithm is crucial for computing the ground-state energy of a molecular electronic Hamiltonian on a quantum computer. Its efficiency depends on the overlap between the Hamiltonian's ground state and an initial state, which tends to decay exponentially with system size. We showcase a practical orbital optimization scheme to alleviate this issue.

View Article and Find Full Text PDF

With the rapid development of thermally activated delayed fluorescence (TADF) materials, achieving efficient reverse intersystem crossing (RISC) to mitigate triplet-triplet annihilation has emerged as a prominent research focus. This study investigates five derivative molecules, featuring varied bridging atoms/groups (O, S, Se, -CH-), designed from the reported TADF molecule with through-space charge transfer (TSCT) properties. Utilizing time-dependent density functional theory coupled with a PCM solution model, their excited state behaviors were simulated in a toluene environment.

View Article and Find Full Text PDF

The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported COLi (AM@COLi) complexes to enhance their NLO response. The AM-COLi complexes retained their structural features following interaction with the Group-IIIA elements.

View Article and Find Full Text PDF

P-Dopant with Spherical Anion for Stable n-i-p Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices that exhibit limited stability and performance. This study reports the use of a spherical anion of the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI- anion.

View Article and Find Full Text PDF

f-p-d Orbital Hybridization Promotes Hydroxyl Intermediate Adsorption for Electrochemical Biomolecular Oxidation and Identification.

Anal Chem

January 2025

Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China.

The rational design of efficient hydroxyl intermediate (*OH) adsorption catalysts for dopamine electrooxidation still faces a major challenge. To address this challenge, a CeO-loaded CuO catalyst inspired by the f-p-d orbital hybridization strategy is designed to achieve efficient *OH adsorption and improve dopamine oxidation. The experimental results and theoretical calculations demonstrate that the f-p-d orbital hybridization regulates the electron distribution at the Ce-O-Cu interface, which facilitates electron transfer and optimizes the adsorption of *OH, thereby promoting dopamine oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!