Heme proteins have proven to be a convenient platform for the development of designer proteins with novel functionalities. This is achieved by substituting the native iron porphyrin cofactor with a heme analogue that possesses the desired properties. Replacing the iron center of the porphyrin with another metal provides one inroad to novel protein function. A less explored approach is substitution of the porphyrin cofactor with an alternative tetrapyrrole macrocycle or a related ligand. In general, these ligands exhibit chemical properties and reactivity that are distinct from those of porphyrins. While these techniques have most prominently been utilized to develop artificial metalloenzymes, there are many other applications of this methodology to problems in biochemistry, health, and medicine. Incorporation of synthetic cofactors into protein environments represents a facile way to impart water solubility and biocompatibility. It circumvents the laborious synthesis of water-soluble cofactors, which often introduces substantial charge that leads to undesired bioaccumulation. To this end, the incorporation of unnatural cofactors in heme proteins has enabled the development of designer proteins as optical oxygen sensors, MRI contrast agents, spectroscopic probes, tools to interrogate protein function, antibiotics, and fluorescent proteins.Incorporation of an artificial cofactor is frequently accomplished by denaturing the holoprotein with removal of the heme; the refolded apoprotein is then reconstituted with the artificial cofactor. This process often results in substantial protein loss and does not necessarily guarantee that the refolded protein adopts the native structure. To circumvent these issues, our laboratory has pioneered the use of the RP523 strain of to incorporate artificial cofactors into heme proteins using expression-based methods. This strain lacks the ability to biosynthesize heme, and the bacterial cell wall is permeable to heme and related molecules. In this way, heme analogues supplemented in the growth medium are incorporated into heme proteins. This approach can also be leveraged for the direct expression of the apoprotein for subsequent reconstitution.These methodologies have been exploited to incorporate non-native cofactors into heme proteins that are resistant to harsh environmental conditions: the heme nitric oxide/oxygen binding protein (H-NOX) from () and the heme acquisition system protein A (HasA) from (). The exceptional stability of these proteins makes them ideal scaffolds for biomedical applications. Optical oxygen sensing has been accomplished using a phosphorescent ruthenium porphyrin as the artificial heme cofactor. Paramagnetic manganese and gadolinium porphyrins yield high-relaxivity, protein-based MRI contrast agents. A fluorescent phosphorus corrole serves as a heme analogue to produce fluorescent proteins. Iron complexes of nonporphyrin cofactors bound to HasA inhibit the growth of pathogenic bacteria. Moreover, HasA can deliver a gallium phthalocyanine into the bacterial cytosol to serve as a sensitizer for photochemical sterilization. Together, these examples illustrate the potential for designer heme proteins to address burgeoning problems in the areas of health and medicine. The concepts and methodologies presented in this Account can be extended to the development of next-generation biomedical sensing and imaging agents to identify and quantify clinically relevant metabolites and other key disease biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754152PMC
http://dx.doi.org/10.1021/acs.accounts.1c00588DOI Listing

Publication Analysis

Top Keywords

heme proteins
28
heme
16
cofactors heme
12
proteins
11
designer heme
8
heme analogues
8
development designer
8
designer proteins
8
porphyrin cofactor
8
heme analogue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!