Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biological data is inherently heterogeneous and high-dimensional. Single-cell sequencing of transcripts in a tissue sample generates data for thousands of cells, each of which is characterized by upwards of tens of thousands of genes. How to identify the subsets of cells and genes that are associated with a label of interest remains an open question. In this paper, we integrate a signal-extractive neural network architecture with axiomatic feature attribution to classify tissue samples based on single-cell gene expression profiles. This approach is not only interpretable but also robust to noise, requiring just 5% of genes and 23% of cells in an in silico tissue sample to encode signal in order to distinguish signal from noise with greater than 70% accuracy. We demonstrate its applicability in two real-world settings for discovering cell type-specific chemokine correlates: predicting response to immune checkpoint inhibitors in multiple tissue types and classifying DNA mismatch repair status in colorectal cancer. Our approach not only significantly outperforms traditional machine learning classifiers but also presents actionable biological hypotheses of chemokinemediated tumor immunogenicity.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!