A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying Cell Type-Specific Chemokine Correlates with Hierarchical Signal Extraction from Single-Cell Transcriptomes. | LitMetric

Biological data is inherently heterogeneous and high-dimensional. Single-cell sequencing of transcripts in a tissue sample generates data for thousands of cells, each of which is characterized by upwards of tens of thousands of genes. How to identify the subsets of cells and genes that are associated with a label of interest remains an open question. In this paper, we integrate a signal-extractive neural network architecture with axiomatic feature attribution to classify tissue samples based on single-cell gene expression profiles. This approach is not only interpretable but also robust to noise, requiring just 5% of genes and 23% of cells in an in silico tissue sample to encode signal in order to distinguish signal from noise with greater than 70% accuracy. We demonstrate its applicability in two real-world settings for discovering cell type-specific chemokine correlates: predicting response to immune checkpoint inhibitors in multiple tissue types and classifying DNA mismatch repair status in colorectal cancer. Our approach not only significantly outperforms traditional machine learning classifiers but also presents actionable biological hypotheses of chemokinemediated tumor immunogenicity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell type-specific
8
type-specific chemokine
8
chemokine correlates
8
tissue sample
8
identifying cell
4
correlates hierarchical
4
hierarchical signal
4
signal extraction
4
extraction single-cell
4
single-cell transcriptomes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!