With its accumulation in upland rice, cadmium (Cd) can easily enter the human food chain, which poses a global health threat considering nearly half of the human population depends on rice as a staple food source. A study was conducted to (1) evaluate Cd accumulation by rice cultivars, grown in Cd-polluted Tropical Oxisols, with different levels of Cd tolerance; (2) quantify Cd transfer from soil to rice shoots and grain; and (3) estimate daily Cd intake by humans. Three rice cultivars, characterized by low (Cateto Seda-CS), medium (BRSMG Talento-BT), and high (BRSMG Caravera-BC) Cd uptake capacity, were investigated. Rice cultivars were exposed to increasing soil Cd concentrations (0.0, 0.7, 1.3, 3.9, 7.8, and 11.7 mg kg). Analysis was performed on soil, shoots, and grain. Shoot biomass and grain yield decreased with increasing Cd supply, suggesting the following Cd tolerance: CS > BT > BC. Cadmium concentrations in shoots and grain increased when exposed to Cd. Only CS did not exceed the maximum Cd limit permitted in food (0.40 mg kg), when rates up to 1.3 mg kg of Cd were applied to soil. Considering daily rice consumption levels in Brazil, Cd intake often exceeds maximum tolerable levels. Continuous monitoring of soil Cd concentrations is a pivotal step in avoiding hazards to humans. Such monitoring is important on a global scale since outside of Asia, Brazil is the leading rice-producing and rice-consuming country.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-021-09655-1DOI Listing

Publication Analysis

Top Keywords

rice cultivars
16
shoots grain
12
rice
8
soil concentrations
8
soil
6
comparing soil-to-plant
4
soil-to-plant cadmium
4
cadmium transfer
4
transfer potential
4
potential human
4

Similar Publications

Rice (Oryza sativa) is a vital food crop and staple diet for most of the world's population. Poor dietary choices have had a significant role in the development of type-2 diabetes in the population that relies on rice and rice-starch-based foods. Hence, our study investigated the in vitro digestion and glycemic indices of certain indigenous rice cultivars and the factors influencing these indices.

View Article and Find Full Text PDF

Drought stress remains a serious concern in L. var , cultivar Satabdi (IET4786) production, particularly during the earliest growth phases, ultimately affecting yield due to the recent trend of delayed rain arrival in West Bengal, India. This study aimed to develop a cost-effective strategy to improve the drought tolerance capacity of rice seedlings by priming the seeds with flavonoid-enriched extract (FEE) of French marigold () petals to withstand the initial drought milieu.

View Article and Find Full Text PDF

OsBBX2 Delays Flowering by Repressing Expression Under Long-Day Conditions in Rice.

Plants (Basel)

December 2024

State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, NortheastInstitute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.

Members of the B-Box (BBX) family of proteins play crucial roles in the growth and development of rice. Here, we identified a rice BBX protein, Oryza sativa BBX2 (OsBBX2), which exhibits the highest expression in the root. The transcription of follows a diurnal rhythm under photoperiodic conditions, peaking at dawn.

View Article and Find Full Text PDF

Salt stress poses a significant constraint on rice production, so further exploration is imperative to elucidate the intricate molecular mechanisms governing salt tolerance in rice. By manipulating the rhizosphere microbial communities or targeting specific microbial functions, it is possible to enhance salt tolerance in crops, improving crop yields and food security in saline environments. In this study, we conducted rice rhizospheric microbial amplicon sequencing and metatranscriptome analysis, revealing substantial microbiomic differences between the salt-tolerant rice cultivar TLJIAN and the salt-sensitive HUAJING.

View Article and Find Full Text PDF

Response of starch molecular structures to temperature and light during rice grain-filling stage in karst region.

Int J Biol Macromol

January 2025

Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China. Electronic address:

The impact of temperature and light on rice quality has high research interest, but the mechanism remains unclear. Herein, six rice cultivars were planted in karst regions of Xingyi (XY, 1300 m above sea level, asl), Guiding (GD, 1100 m asl), and Huangping (HP, 684 m asl) in China. Starch molecular structures were investigated to reveal the influences of ecological conditions during grain-filling stage on rice quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!