Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Pulse transit time and pulse wave velocity (PWV) are related to blood pressure (BP), and there were continuous attempts to use these to predict BP through wearable devices. However, previous studies were conducted on a small scale and could not confirm the relative importance of each variable in predicting BP.
Objective: This study aims to predict systolic blood pressure and diastolic blood pressure based on PWV and to evaluate the relative importance of each clinical variable used in BP prediction models.
Methods: This study was conducted on 1362 healthy men older than 18 years who visited the Samsung Medical Center. The systolic blood pressure and diastolic blood pressure were estimated using the multiple linear regression method. Models were divided into two groups based on age: younger than 60 years and 60 years or older; 200 seeds were repeated in consideration of partition bias. Mean of error, absolute error, and root mean square error were used as performance metrics.
Results: The model divided into two age groups (younger than 60 years and 60 years and older) performed better than the model without division. The performance difference between the model using only three variables (PWV, BMI, age) and the model using 17 variables was not significant. Our final model using PWV, BMI, and age met the criteria presented by the American Association for the Advancement of Medical Instrumentation. The prediction errors were within the range of about 9 to 12 mmHg that can occur with a gold standard mercury sphygmomanometer.
Conclusions: Dividing age based on the age of 60 years showed better BP prediction performance, and it could show good performance even if only PWV, BMI, and age variables were included. Our final model with the minimal number of variables (PWB, BMI, age) would be efficient and feasible for predicting BP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8701706 | PMC |
http://dx.doi.org/10.2196/29212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!