A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photonic Microbeads Templated by Oil-in-Oil Emulsion Droplets for High Saturation of Structural Colors. | LitMetric

Photonic microbeads containing crystalline colloidal arrays are promising as a key component of structural-color inks for various applications including printings, paintings, and cosmetics. However, structural colors from microbeads usually have low color saturation and the production of the beads requires delicate and time-consuming protocols. Herein, elastic photonic microbeads are designed with enhanced color saturation through facile photocuring of oil-in-oil emulsion droplets. Dispersions of highly-concentrated silica particles in elastomer precursors are microfluidically emulsified into immiscible oil to produce monodisperse droplets. The silica particles spontaneously form crystalline arrays in the entire volume of the droplets due to interparticle repulsion which is unperturbed by the diffusion of the surrounding oil whereas weakened for oil-in-water droplets. The crystalline arrays are permanently stabilized by photopolymerization of the precursor, forming elastic photonic microbeads. The microbeads are transferred into the refractive-index-matched biocompatible oil. The high crystallinity of colloidal arrays increases the reflectivity at stopband and the index matching reduces incoherent scattering at the surface of the microbeads, enhancing color saturation. The colors can be adjusted by mixing two distinctly colored microbeads. Also, low stiffness and high elasticity reduce foreign-body sensation and enhance fluidity, potentially serving as pragmatic structural colorants for photonic inks.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202105225DOI Listing

Publication Analysis

Top Keywords

photonic microbeads
16
color saturation
12
oil-in-oil emulsion
8
emulsion droplets
8
structural colors
8
colloidal arrays
8
microbeads low
8
elastic photonic
8
silica particles
8
crystalline arrays
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!