β-Thalassemia: evolving treatment options beyond transfusion and iron chelation.

Hematology Am Soc Hematol Educ Program

Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.

Published: December 2021

After years of reliance on transfusion alone to address anemia and suppress ineffective erythropoiesis in β-thalassemia, many new therapies are now in development. Luspatercept, a transforming growth factor-β inhibitor, has demonstrated efficacy in reducing ineffective erythropoiesis, improving anemia, and possibly reducing iron loading. However, many patients do not respond to luspatercept, so additional therapeutics are needed. Several medications in development aim to induce hemoglobin F (HbF): sirolimus, benserazide, and IMR-687 (a phosphodiesterase 9 inhibitor). Another group of agents seeks to ameliorate ineffective erythropoiesis and improve anemia by targeting abnormal iron metabolism in thalassemia: apotransferrin, VIT-2763 (a ferroportin inhibitor), PTG-300 (a hepcidin mimetic), and an erythroferrone antibody in early development. Mitapivat, a pyruvate kinase activator, represents a unique mechanism to mitigate ineffective erythropoiesis. Genetically modified autologous hematopoietic stem cell transplantation offers the potential for lifelong transfusion independence. Through a gene addition approach, lentiviral vectors have been used to introduce a β-globin gene into autologous hematopoietic stem cells. One such product, betibeglogene autotemcel (beti-cel), has reached phase 3 trials with promising results. In addition, 2 gene editing techniques (CRISPR-Cas9 and zinc-finger nucleases) are under investigation as a means to silence BCL11A to induce HbF with agents designated CTX001 and ST-400, respectively. Results from the many clinical trials for these agents will yield results in the next few years, which may end the era of relying on transfusion alone as the mainstay of thalassemia therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791140PMC
http://dx.doi.org/10.1182/hematology.2021000313DOI Listing

Publication Analysis

Top Keywords

ineffective erythropoiesis
16
autologous hematopoietic
8
hematopoietic stem
8
β-thalassemia evolving
4
evolving treatment
4
treatment options
4
transfusion
4
options transfusion
4
transfusion iron
4
iron chelation
4

Similar Publications

Hemoglobin H (HbH) disease is associated with anemia, ineffective erythropoiesis, and iron overload. We report a case of a patient with HbH/Hb Constant Spring disease, who was maintained on chronic transfusions as an adult due to symptomatic anemia. Over time, he developed iron overload and was started on chelation therapy but did not have an adequate response to chelation.

View Article and Find Full Text PDF

Folate metabolism in myelofibrosis: a missing key?

Ann Hematol

January 2025

Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, Parma, 43126, Italy.

Folates serve as key enzyme cofactors in several biological processes. Folic acid supplementation is a cornerstone practice but may have a "dark side". Indeed, the accumulation of circulating unmetabolized folic acid (UMFA) has been associated with various chronic inflammatory conditions, including cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Thalassaemia stems from over 250 mutations in the beta globin gene, impacting hematopoietic stem cell differentiation and causing ineffective red blood cell production.
  • The traditional focus on managing symptoms with transfusions and iron chelation therapy has hindered progress toward developing cell-based treatments, despite advancements in understanding the disease since the identification of the beta039 mutation in 1979.
  • Recent progress in treating hematopoietic stem cell disorders emphasizes a 'target cell strategy,' suggesting a shift toward innovative treatments for thalassaemia that identify suitable candidates through risk stratification, highlighting its nature as a congenital HSC disorder.
View Article and Find Full Text PDF

A number of studies have reported an association between phosphorus, red blood cell (RBC) production, and iron metabolism. However, it is difficult to distinguish whether the effect of phosphorus is direct or through the actions of FGF23, and it is not clear whether phosphorus is positively or negatively associated with RBC production. In the present study, we investigated the effects of a) increased phosphorus load and b) phosphorus deficiency on erythropoiesis and iron metabolism in association with FGF23.

View Article and Find Full Text PDF

The role of miR-129-5p in regulating γ-globin expression and erythropoiesis in β-thalassemia.

Hum Mol Genet

December 2024

College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China.

The regulation of γ-globin expression is crucial due to its beneficial effects on diseases like β-thalassemia and sickle cell disease. B-cell lymphoma/leukemia 11A (BCL11A) is a significant suppressor of γ-globin, and microRNAs (miRNAs) targeting BCL11A have been shown to alleviate this suppression. In our previous high-throughput sequencing, we identified an 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!