A synthetic approach towards the 6-benzo[]chromene ring under visible light and transition-metal-free conditions has been developed. Benzochromenes are synthesized from the corresponding (2-halobenzyl) phenyl ethers or (2-halophenyl) benzyl ethers using KOBu in dimethyl sulfoxide (DMSO) at room temperature (rt) and blue light-emitting diodes (LEDs) as the light source. This methodology replaces the use of ligands or additives, high temperatures and toxic solvents. The photostimulated reaction exhibits very good tolerance to different functional groups and 5-dibenzo[,]chromenes are also effectively obtained. An electron donor-acceptor complex formed by the dimsyl anion and (2-halobenzyl) phenyl ethers was found and it induces the ET as the initial step in the photocyclization reaction. Furthermore, in order to explain the regiochemical outcome of this reaction, a theoretical analysis was performed using DFT methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1ob01673c | DOI Listing |
Semin Ophthalmol
January 2025
Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Purposes: This meta-analysis aims to systematically analyze the efficacy of low-level red light (LRL) therapy for myopia control and prevention in children.
Methods: All the data were searched from the PubMed, EMBASE, and the Cochrane Library. The Cochrane Handbook was used to evaluate the quality of the included studies.
Photochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.
View Article and Find Full Text PDFGeroscience
January 2025
National Institute On Aging, Bethesda, MD, USA.
Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Drexel University College of Medicine, 860 1St Avenue, Suite 8B, Philadelphia, PA, 19406, USA.
UV-A exposure is a major risk factor for melanoma, nonmelanoma skin cancer, photoaging, and exacerbation of photodermatoses. Since people spend considerable time in cars daily, inadequate UV-A attenuation by car windows can significantly contribute to the onset or exacerbation of these skin diseases. Given recent market trends in the automobile industry and known impact of car windows on cumulative lifelong UV damage to the skin, there is a need to comparatively evaluate UV transmission across windows in electric vehicles (EV), hybrid vehicles (HV), and gas vehicles (GV) as well as variability based on year of manufacture and mileage to inform car manufacturers and consumers of the potential for UV exposure to the skin based on vehicle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!