Promoting the doping efficiency and photoluminescence quantum yield of Mn-doped perovskite nanocrystals two-step hot-injection.

Chem Commun (Camb)

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.

Published: January 2022

Manganese-doped perovskite nanocrystals (NCs) have been synthesized by a novel two-step hot-injection strategy with an unprecedented Mn doping efficiency of 48.5%, bright orange emission under ultraviolet light and X-ray excitation and a photoluminescence quantum yield of 84.4%, making them excellent luminescent materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc06219kDOI Listing

Publication Analysis

Top Keywords

doping efficiency
8
photoluminescence quantum
8
quantum yield
8
perovskite nanocrystals
8
two-step hot-injection
8
promoting doping
4
efficiency photoluminescence
4
yield mn-doped
4
mn-doped perovskite
4
nanocrystals two-step
4

Similar Publications

Water contamination is a result of the excessive use of antibiotics nowadays. Owing to this environmental toxicity, photocatalytic degradation is the primary approach to non-biological degradation for their removal. In this context, zerovalent Bi-doped g-CN/BiMoO [g-CN/Bi@BiMoO] ternary nanocomposite was prepared using the wet impregnation method.

View Article and Find Full Text PDF

Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability.

View Article and Find Full Text PDF

The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.

View Article and Find Full Text PDF

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

Background: Osoto-gari is a leg throw technique that primarily relies on the hip extension to initiate the sweeping motion of the leg. A high sweep contact velocity is a crucial factor in efficiently executing this technique. While some literature emphasises whole-body coordination in the leg-sweeping action, the roles of trunk and head motion remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!