In this study, we demonstrate an acoustofluidic device that enables single-file focusing of submicron particles and bacteria using a two-dimensional (2D) acoustic standing wave. The device consists of a 100 μm × 100 μm square channel that supports 2D particle focusing in the channel center at an actuation frequency of 7.39 MHz. This higher actuation frequency compared with conventional bulk acoustic systems enables radiation-force-dominant motion of submicron particles and overcomes the classical size limitation (≈2 μm) of acoustic focusing. We present acoustic radiation force-based focusing of particles with diameters less than 0.5 μm at a flow rate of 12 μL min, and 1.33 μm particles at flow rates up to 80 μL min. The device focused 0.25 μm particles by the 2D acoustic radiation force while undergoing a channel cross-section centered, single-vortex acoustic streaming. A suspension of bacteria was also investigated to evaluate the biological relevance of the device, which demonstrated the alignment of bacteria in the channel at a flow rate of up to 20 μL min. The developed acoustofluidic device can align submicron particles within a narrow flow stream in a highly robust manner, validating its use as a flow-through focusing chamber to perform high-throughput and accurate flow cytometry of submicron objects.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1an01891dDOI Listing

Publication Analysis

Top Keywords

submicron particles
16
μl min
12
acoustofluidic device
8
100 μm
8
actuation frequency
8
acoustic radiation
8
flow rate
8
rate μl
8
μm particles
8
particles
7

Similar Publications

The use of nanoparticulate systems for the transport of active ingredients into hair follicles has been researched for almost two decades, resulting in countless publications with a wide variety of particle types, release mechanisms and active ingredients. The production of a stable dispersion is often time-consuming and costly. In this publication, we demonstrate for the first time that simply adding diverse submicron particles to a drug solution significantly increases follicular penetration depth by over 160% to 190%, allowing the targeting of subinfundibular structures.

View Article and Find Full Text PDF

Stabilizing bicontinuous particle-stabilized emulsions formed solvent transfer-induced phase separation.

Soft Matter

January 2025

Van 't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.

Bicontinuous particle-stabilized emulsions (bijels) are unique soft materials that combine the bulk properties of two immiscible fluids into a single interconnected structure. This structure is achieved through the formation of two interwoven fluid networks, stabilized by an interfacial layer of colloidal particles. Bijels with submicron-scale domain networks can be synthesized solvent transfer-induced phase separation (STrIPS).

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).

View Article and Find Full Text PDF

This article reports on the scalability of a combined wet grinding technique applying planetary ball mill and ZrO pearls as the grinding medium. After the determination of the parameters in a laboratory scale, the tenfold scale-up method was set. Meloxicam (MEL) was used as a nonsteroidal anti-inflammatory drug (NSAID) intended for per os delivery.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) and Catalase (CAT) play a crucial role as the first line of defense antioxidant enzymes in a living cell. These enzymes neutralize the superoxide anion from the autooxidation of oxyhemoglobin (Oxy-Hb) and convert hydrogen peroxides into water and molecular oxygen. In this study, we fabricated hemoglobin submicron particles (HbMPs) using the Coprecipitation Crosslinking Dissolution (CCD) technique and incorporating first-line antioxidant enzymes (CAT, SOD) and second-line antioxidant (ascorbic acid, Vit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!