Recent Advances in the Medicinal Chemistry of Farnesoid X Receptor.

J Med Chem

Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.

Published: December 2021

Farnesoid X receptor (FXR) is an important regulator of bile acid, lipid, amino acid, and glucose homeostasis, hepatic inflammation, regeneration, and fibrosis. FXR has been recognized as a promising drug target for various metabolic diseases such as lipid disorders, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and chronic kidney disease. A large number of FXR ligands have been developed by pharmaceutical companies and academic institutions, and several candidates have progressed into clinical trials in the past decade. However, it is continually a challenge to discover drugs targeting FXR due to side effects associated with long-term administration. In this perspective, we summarize the research progress on medicinal chemistry of FXR modulators from 2018 to the present by discussing the diverse structures of synthetic FXR modulators including steroidal and non-steroidal ligands, their structure-activity relationships (SARs), and their therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.1c01017DOI Listing

Publication Analysis

Top Keywords

medicinal chemistry
8
farnesoid receptor
8
fxr modulators
8
fxr
6
advances medicinal
4
chemistry farnesoid
4
receptor farnesoid
4
receptor fxr
4
fxr regulator
4
regulator bile
4

Similar Publications

Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world.

View Article and Find Full Text PDF

A chemical examination of a root extract of led to the isolation and identification of 23 compounds, including oxazole-type alkaloids and isoflavonoid derivatives. Notably, three oxazole-type alkaloids (, , and ) and two isoflavonoid derivatives ( and ) were obtained from a natural source for the first time. In addition, derived 2,5-diphenyloxazoles and their derivatives were synthesized.

View Article and Find Full Text PDF

The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks.

View Article and Find Full Text PDF

Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.

View Article and Find Full Text PDF

Chemical space as a unifying theme for chemistry.

J Cheminform

January 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.

Chemistry has diversified from a basic understanding of the elements to studying millions of highly diverse molecules and materials, which together are conceptualized as the chemical space. A map of this chemical space where distances represent similarities between compounds can represent the mutual relationships between different subfields of chemistry and help the discipline to be viewed and understood globally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!