Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Currently, there are no fast and accurate screening methods available for head and neck cancer, the eighth most common tumor entity. For this study, we used hyperspectral imaging, an imaging technique for quantitative and objective surface analysis, combined with deep learning methods for automated tissue classification. As part of a prospective clinical observational study, hyperspectral datasets of laryngeal, hypopharyngeal and oropharyngeal mucosa were recorded in 98 patients before surgery in vivo. We established an automated data interpretation pathway that can classify the tissue into healthy and tumorous using convolutional neural networks with 2D spatial or 3D spatio-spectral convolutions combined with a state-of-the-art Densenet architecture. Using 24 patients for testing, our 3D spatio-spectral Densenet classification method achieves an average accuracy of 81%, a sensitivity of 83% and a specificity of 79%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.202100167 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!