Biosynthesis of silver nanoparticles using endophytic Fusarium oxysporum strain NFW16 and their in vitro antibacterial potential.

Microsc Res Tech

Department of Microbiology, Applied, Environmental and Geomicrobiology Laboratory, Quaid-i-Azam University, Islamabad 45320, Pakistan.

Published: April 2022

Nanotechnology has provided a platform for altering, modifying, and developing metal properties to nanoparticles with promising applications. This study aimed to produce functionalized and biocompatible silver nanoparticles (AgNPs) using cellular extracts of endophytic Fusarium oxysporum-NFW16 isolated from Taxus fauna and evaluate its antibacterial potential. Under optimized reaction conditions, well-dispersed and extremely stable AgNPs were synthesized in 1 hr. AgNPs were characterized through UV-visible spectrophotometry (at 423 nm), and scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The obtained AgNPs were spherical, monodispersed, and size was ~30-36.1 nm. Strong peaks of XRD (311), (220), (200), and (111) matched to silver plane's diffraction facets. FTIR spectra at 1,650, 2,950, and 1,400 cm confirmed the capping of AgNPs with phenolic compounds and compounds having primary amines. The AgNPs showed 100 μg/ml of minimum inhibitory concentration against methicillin-resistant Staphylococcus aureus (MRSA). In addition, AgNPs showed a synergistic effect with both vancomycin and ciprofloxacin against MRSA (25%), Pseudomonas aeruginosa (50%), and pus isolated Escherichia coli (50%). Moreover, AgNPs impregnated cotton and bandage showed in vitro antibacterial potential against American Type Culture Collection and skin-associated clinical pathogenic bacteria. Findings showed that endophytic fungi are the potential source for AgNPs synthesis that are effective against multidrug-resistant bacteria and the development of antimicrobial textile finishes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24018DOI Listing

Publication Analysis

Top Keywords

antibacterial potential
12
agnps
9
silver nanoparticles
8
endophytic fusarium
8
vitro antibacterial
8
biosynthesis silver
4
nanoparticles endophytic
4
fusarium oxysporum
4
oxysporum strain
4
strain nfw16
4

Similar Publications

Background: The excessive use of antibiotics is a major contributor to the global issue of antimicrobial resistance (AMR), a significant threat to human and animal health. Hence, assessing new strategies for managing Multi-Drug Resistant (MDR) microorganisms is vital. In this study, the use of mechanically isolated mature adipose cells (MIMACs) and their lysate (Adipolysate) as a new sustainable antimicrobial agent was assessed against Methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

The Pharmacology and Toxicology of Ginkgolic Acids: Secondary Metabolites from .

Am J Chin Med

January 2025

School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China.

Ginkgolic acids (GAs) are distinctive secondary metabolites of () primarily found in its leaves and seeds, with the highest concentration located in the exotesta. GAs are classified as long-chain phenolic compounds, and exhibit structural similarities to lignoceric acid. Their structural diversity arises from variations in the length of side chains and their number of double bonds, resulting in six distinct forms within extracts (GBE).

View Article and Find Full Text PDF

The current study was designed to evaluate the antibacterial, antibiofilm, and biofilm inhibitory potential of six medicinal plants, including Trachyspermum ammi, Trigonella foenum-graecum, Nigella sativa, Thymus vulgaris, Terminalia arjuna, and Ipomoea carneaid against catheter-associated bacteria (CAB). Eighteen CAB were identified up to species level using 16S rRNA gene sequencing, viz., Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Coelomic fluid of earthworms is a valuable source of novel bioactive compounds with therapeutic applications. To gain insight into the bioactive compounds in the coelomic fluid, this study used Perionyx excavatus, a tropical earthworm distinguished for its remarkable ability for regeneration. This study aimed to identify fluorescent bioactive compounds in the coelomic fluid of P.

View Article and Find Full Text PDF

The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!