Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coaxial electrostatic spray technology has received extensive attention in fabricating micro/nanoparticles for drug delivery. However, there are few reports on applying this technology in preparing albumin nanoparticles. In this study, the bufalin (BF) and nintedanib (NDNB) co-loaded ursodeoxycholic acid and p-biguanides benzoic acid decorated albumin sub-microparticles (BN-DUB subMPs) were fabricated by coaxial electrostatic spray technology and optimized by central composite design. Five percent of albumin (contained 0.7% polyethylene oxide) solution was selected as the shell solution which ejected through outer axis with the flow rate of 0.07 mm/min, while the core solution which contained by BF and NDNB ethanol solution was ejected through inner axis with the flow rate of 0.05 mm/min. In vitro cell studies revealed that the modified albumin possessed good biocompatibility. What's more, the BN-DUB subMPs enhanced the inhibitory effect on the growth of LLC cells efficiently. The pharmacokinetics study showed that the t and AUC of BN-DUB subMPs increased significantly compared with that of the drug solution, which indicated the improved in vivo stability of modified albumin nanoparticles. Thus, this study provided a novel and simple technical platform for the development of albumin-based drug carriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-021-02163-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!