The organisation of chromatin is closely intertwined with biological activities of chromosome domains, including transcription and DNA replication status. Scaffold-attachment factor A (SAF-A), also known as heterogeneous nuclear ribonucleoprotein U (HNRNPU), contributes to the formation of open chromatin structure. Here, we demonstrate that SAF-A promotes the normal progression of DNA replication and enables resumption of replication after inhibition. We report that cells depleted of SAF-A show reduced origin licensing in G1 phase and, consequently, reduced origin activation frequency in S phase. Replication forks also progress less consistently in cells depleted of SAF-A, contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed two distinct effects of SAF-A depletion: first, the boundaries between early- and late-replicating domains become more blurred; and second, SAF-A depletion causes replication timing changes that tend to bring regions of discordant domain compartmentalisation and replication timing into concordance. Associated with these defects, SAF-A-depleted cells show elevated formation of phosphorylated histone H2AX (γ-H2AX) and tend to enter quiescence. Overall, we find that SAF-A protein promotes robust DNA replication to ensure continuing cell proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.258991DOI Listing

Publication Analysis

Top Keywords

dna replication
16
replication timing
12
replication
10
saf-a
8
saf-a promotes
8
origin licensing
8
robust dna
8
cells depleted
8
depleted saf-a
8
reduced origin
8

Similar Publications

The N6-methyladenine (6mA) modification is an essential epigenetic marker and plays a crucial role in processes, such as DNA repair, replication, gene expression regulation, etc. YerA from Bacillus subtilis is considered a novel class of enzymes capable of catalyzing the deamination of 6mA to produce hypoxanthine. Despite the significance of this type of enzymes in bacterial self-defense systems and potential applications as a gene-editing tool, the substrate specificity, the catalytic mechanism and the physiological function of YerA are currently unclear due to the lack of structural information.

View Article and Find Full Text PDF

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site.

View Article and Find Full Text PDF

DNA replication stress (RS), a prevalent feature of various malignancies, arises from both genetic mutations and genotoxic exposure. Elevated RS levels increase the vulnerability of cancer cells to ataxia telangiectasia and Rad3-related kinase inhibitors (ATRis). Here, we screened for DNA damage response inhibitors that enhance ATRi-induced cytotoxicity using SWI/SNF complex-deficient cells and identified a potent synergy between ATRi and poly(ADP-ribose) polymerase inhibitor (PARPi), particularly in SMARCA4-deficient cells.

View Article and Find Full Text PDF

Exploring the mechanisms of cadmium tolerance and bioaccumulation in a soil amoeba.

Sci Total Environ

January 2025

School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

Cadmium (Cd) pollution is a global concern. Protists represent a prevalent yet understudied group in soil ecosystems, but our understanding of how protists interact with Cd remains limited. This study investigates the interaction between Cd and the soil amoeba Dictyostelium discoideum, focusing on its resistance, accumulation, and molecular mechanisms.

View Article and Find Full Text PDF

DNA double strand breaks (DSBs) can be generated spontaneously during DNA replication and are repaired primarily by Homologous Recombination (HR). However, efficient repair requires chromatin remodeling to allow the recombination machinery access to the break. TIP60 is a complex conserved from yeast to humans that is required for histone acetylation and modulation of HR activity at DSBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!