Propionic acidaemia (PPA) is a disorder of amino acid and odd-chain fatty acid metabolism. Hypoglycaemia is a more commonly described finding rather than hyperglycaemia during metabolic decompensation of PPA. There is a high mortality rate in patients with organic acidaemias having severe insulin-resistant hyperglycaemia. We report a nine-month-old boy with PPA who was admitted to tertiary care hospital in Muscat, Oman, in 2018 with metabolic decompensation, persistent hyperglycaemia and transient insulin resistance. Hyperglycaemia did not respond to high insulin infusion. Plasma glucose only improved when glucose infusion rate (GIR) reached 7 mg/kg/min. The patient has full recovery and was discharged, with follow up plan. It is important to balance the GIR to achieve the targeted insulin level, beyond which the risks of hyperglycaemia start to outweigh the potential anabolic benefits of additional insulin secretion. Timely clinical attention should be given to achieve adequate caloric delivery through alternative sources other than high GIR to permit better glycaemic control, especially when insulin-resistant hyperglycaemia is present.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631204PMC
http://dx.doi.org/10.18295/squmj.4.2021.039DOI Listing

Publication Analysis

Top Keywords

transient insulin
8
insulin resistance
8
propionic acidaemia
8
metabolic decompensation
8
insulin-resistant hyperglycaemia
8
hyperglycaemia
6
resistance propionic
4
acidaemia knowing
4
knowing half
4
half battle
4

Similar Publications

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) stems from disrupted lipid metabolism in the liver, often linked to obesity, type 2 diabetes, and dyslipidemia. In Mexico, where obesity affects 36.9% of adults, MASLD prevalence has risen, especially with metabolic syndrome affecting 56.

View Article and Find Full Text PDF

Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior.

View Article and Find Full Text PDF

Commercially available insulin pumps for treatment of diabetes mellitus are currently not qualified to operate in the space environment. This work rigorously tested the fluid delivery performance of a Tandem t:slim X2 insulin pump in both micro- and hypergravity during a parabolic microgravity research flight. The parabolic research flight environment serves as an analogue to the types of transient gravitational loadings experienced during human-led missions, which provides a foundation to expand testing to suborbital and orbital flights in addition to other extreme environmental tests for wilderness dependency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!