Magnesium silicate is an inorganic compound used as an ingredient in product formulations for many different purposes. Since its compatibility with other components is critical for product quality and stability, it is essential to characterize the integrity of magnesium silicate in different solutions used for formulations. In this paper, we have determined the magnitude of dissociation of synthetic magnesium silicate in solution with positively charged, neutral, and negatively charged compounds using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). The EDS results were verified through Monte Carlo simulations of electron-sample interactions. The compounds chosen for this study were positively charged cetylpyridinium chloride (CPC), neutral lauryl glucoside, and negatively charged sodium cocoyl glutamate and sodium cocoyl glycinate since these are common compounds used in personal care and oral care formulations. Negatively charged compounds significantly impacted magnesium silicate dissociation, resulting in physio-chemical separation between magnesium and silicate ions. In contrast, the positively charged compound had a minor effect on dissociation due to ion competition, and the neutral compound did not have such an impact on magnesium silicate dissociation. Further, when the magnesium ions are dissociated from the synthetic magnesium silicate, the morphology is changed accordingly, and the structural integrity of the synthetic magnesium silicate is damaged. The results provide scientific confidence and guidance for product development using synthetic magnesium silicate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660837PMC
http://dx.doi.org/10.1038/s41598-021-02930-8DOI Listing

Publication Analysis

Top Keywords

magnesium silicate
40
synthetic magnesium
20
charged compounds
12
positively charged
12
negatively charged
12
magnesium
11
silicate
10
integrity synthetic
8
sodium cocoyl
8
silicate dissociation
8

Similar Publications

A multifunctional quasi-solid-state polymer electrolyte with highly selective ion highways for practical zinc ion batteries.

Nat Commun

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.

View Article and Find Full Text PDF

Rhizobacteria and silicon modulate defense, oxidative stress, and suppress blast disease in upland rice plants in low phosphorus soils under field conditions.

Planta

December 2024

Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil.

Rhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants. Association of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions.

View Article and Find Full Text PDF

Silicate-based adsorbents offer significant advantages over traditional materials, particularly due to their superior thermal and chemical stability, enhanced regenerability, and the ability to endure more rigorous operating conditions. In this study, an amorphous Na-Ca-magnesium silicate adsorbent (SAAM) and its g-CN-modified counterpart (gCN-SAAM) were synthesized via alkali activation and a subsequent thermal process, respectively. The g-CN modification resulted in a novel hybrid adsorbent with a remarkable methylene blue (MB) adsorption capacity of 420 mg g, four times higher than the unmodified sample, setting a new benchmark.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have demonstrated considerable potential in the treatment of ischemic bone diseases, such as glucocorticoid-induced osteonecrosis of the femoral head (GIONFH). However, the clinical application of EVs faces challenges such as low yield, poor bioactivity, and lack of targeting. Herein, we have developed a platform of multiengineered extracellular vesicle mimetics (EVMs) to address these challenges.

View Article and Find Full Text PDF

New MgSiO_{4}H_{2} Phases as Potential Primary Water Carriers into the Deep Earth.

Phys Rev Lett

November 2024

Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.

Dense hydrous magnesium silicate MgSiO_{4}H_{2} is widely regarded as a primary water carrier into the deep Earth. However, the stability fields of MgSiO_{4}H_{2} based on the prevailing structure model are narrower than experimental results at relevant pressure and temperature (P-T) conditions, casting doubts about this prominent mineral as a water carrier into the great depths of the Earth. Here, we report on an advanced structure search that identifies two new crystal structures, denoted as α- and β-MgSiO_{4}H_{2}, that are stable over unprecedentedly wide P-T conditions of 17-68 GPa and up to 1860 K, covering the entire experimentally determined range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!