AI Article Synopsis

  • Legionella pneumophila is the leading cause of Legionnaires' disease, but our understanding of its pathogenic factors is still limited.
  • A study of 902 L. pneumophila isolates revealed significant genetic diversity and identified the lag-1 gene as strongly linked to human infections, playing a key role in resistance to immune response.
  • The lag-1 gene enhances bacterial survival by modifying its surface, helping it evade immune attacks and survive in host environments like human serum and mouse models.

Article Abstract

Legionella pneumophila is the most common cause of the severe respiratory infection known as Legionnaires' disease. However, the microorganism is typically a symbiont of free-living amoeba, and our understanding of the bacterial factors that determine human pathogenicity is limited. Here we carried out a population genomic study of 902 L. pneumophila isolates from human clinical and environmental samples to examine their genetic diversity, global distribution and the basis for human pathogenicity. We find that the capacity for human disease is representative of the breadth of species diversity although some clones are more commonly associated with clinical infections. We identified a single gene (lag-1) to be most strongly associated with clinical isolates. lag-1, which encodes an O-acetyltransferase for lipopolysaccharide modification, has been distributed horizontally across all major phylogenetic clades of L. pneumophila by frequent recent recombination events. The gene confers resistance to complement-mediated killing in human serum by inhibiting deposition of classical pathway molecules on the bacterial surface. Furthermore, acquisition of lag-1 inhibits complement-dependent phagocytosis by human neutrophils, and promoted survival in a mouse model of pulmonary legionellosis. Thus, our results reveal L. pneumophila genetic traits linked to disease and provide a molecular basis for resistance to complement-mediated killing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660822PMC
http://dx.doi.org/10.1038/s41467-021-27478-zDOI Listing

Publication Analysis

Top Keywords

resistance complement-mediated
12
complement-mediated killing
12
legionella pneumophila
8
basis resistance
8
human pathogenicity
8
associated clinical
8
human
6
pneumophila
5
population analysis
4
analysis legionella
4

Similar Publications

Unlabelled: Persistent viral infections can be an important medical problem, with persistently infected (PI) cells extending viral shedding, maintaining inflammation, and providing potential sources for new viral variants. Given that PI cells can acquire resistance to some innate immune pathways, we tested the hypothesis that complement (C')-mediated lysis of parainfluenza virus 5 (PIV5)-infected cells would differ between acute-infected and PI cells. Biochemical and real-time cell viability assays showed effective C'-mediated lysis of A549 lung cells acutely infected with PIV5, through pathways that depended on C3 and C5, but largely independent of C6.

View Article and Find Full Text PDF

Isoferulic acid facilitates effective clearance of hypervirulent Klebsiella pneumoniae through targeting capsule.

PLoS Pathog

January 2025

Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.

Hypervirulent Klebsiella pneumoniae (hvKP) poses an alarming threat in clinical settings and global public health owing to its high pathogenicity, epidemic success and rapid development of drug resistance, especially the emergence of carbapenem-resistant lineages (CR-hvKP). With the decline of the "last resort" antibiotic class and the decreasing efficacy of first-line antibiotics, innovative alternative therapeutics are urgently needed. Capsule, an essential virulence determinant, is a major cause of the enhanced pathogenicity of hvKP and represents an attractive drug target to prevent the devastating clinical outcomes caused by hvKP infection.

View Article and Find Full Text PDF

Novel broadly reactive monoclonal antibody protects against infection.

Infect Immun

December 2024

Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA.

The incidence of infections attributed to antimicrobial-resistant (AMR) pathogens has increased exponentially over the recent decades reaching 1.27 million deaths worldwide in 2019. Without intervention, these infections are predicted to cause up to 10 million deaths a year and incur costs of up to 100 trillion US dollars globally by 2050.

View Article and Find Full Text PDF

Carbapenem-resistant (CR-) bacteria are a serious global health concern due to their drug-resistance to nearly all available antibiotics, fast spread, and high mortality rate. O2afg is a major CR- serotype in the sequence type 258 group (KPST258) that is weakly immunogenic in humans. Here, we describe the creation and evaluation of semisynthetic O2afg glycoconjugate vaccine leads containing one and two repeating units of the polysaccharide epitope that covers the surface of the bacteria conjugated to the carrier protein CRM.

View Article and Find Full Text PDF

Normothermic machine perfusion (NMP) is a clinical strategy to reduce renal ischemia-reperfusion injury (IRI). Optimal NMP should restore metabolism and minimize IRI induced inflammatory responses. Microdialysis was used to evaluate renal metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!