A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorption of small organic acids and polyphenols on hematite surfaces: Density Functional Theory + thermodynamics analysis. | LitMetric

Hypothesis: The interactions of organic molecules with mineral surfaces are influenced by several factors such as adsorbate speciation, surface atomic and electronic structure, and environmental conditions. When coupled with thermodynamic techniques, energetics from atomistic modeling can provide a molecular-level picture of which factors determine reactivity. This is paramount for evaluating the chemical processes which control the fate of these species in the environment.

Experiments: Inner-sphere adsorption of oxalate and pyrocatechol on (001), (110), and (012) α-FeO surfaces was modeled using Density Functional Theory (DFT). Unique bidentate binding modes were sampled along each facet to study how different adsorbate and surface factors govern site preference. Adsorption energetics were then calculated using a DFT + thermodynamics approach which combines DFT energies with tabulated data and Nernst-based corrective terms to incorporate different experimental parameters.

Findings: Instead of a universal trend, each facet displays a unique factor that dominates site preference based on either strain (001), functional groups (110), or topography (012). Adsorption energies predict favorable inner-sphere adsorption for both molecules but opposite energetic trends with varying pH. Additionally, vibrational analysis was conducted for each system and compared to experimental IR data. The work presented here provides an effective, computational methodology to study numerous adsorption processes occurring at the surface-aqueous interface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.11.043DOI Listing

Publication Analysis

Top Keywords

density functional
8
inner-sphere adsorption
8
site preference
8
adsorption
6
adsorption small
4
small organic
4
organic acids
4
acids polyphenols
4
polyphenols hematite
4
hematite surfaces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!