IntroductionThe SARS-CoV-2 lineages carrying the amino acid change D614G have become the dominant variants in the global COVID-19 pandemic. By June 2021, all the emerging variants of concern carried the D614G mutation. The rapid spread of the G614 mutant suggests that it may have a transmission advantage over the D614 wildtype.AimOur objective was to estimate the transmission advantage of D614G by integrating phylogenetic and epidemiological analysis.MethodsWe assume that the mutation D614G was the only site of interest which characterised the two cocirculating virus strains by June 2020, but their differential transmissibility might be attributable to a combination of D614G and other mutations. We define the fitness of G614 as the ratio of the basic reproduction number of the strain with G614 to the strain with D614 and applied an epidemiological framework for fitness inference to analyse SARS-CoV-2 surveillance and sequence data.ResultsUsing this framework, we estimated that the G614 mutant is 31% (95% credible interval: 28-34) more transmissible than the D614 wildtype. Therefore, interventions that were previously effective in containing or mitigating the D614 wildtype (e.g. in China, Vietnam and Thailand) may be less effective against the G614 mutant.ConclusionOur framework can be readily integrated into current SARS-CoV-2 surveillance to monitor the emergence and fitness of mutant strains such that pandemic surveillance, disease control and development of treatment and vaccines can be adjusted dynamically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662801 | PMC |
http://dx.doi.org/10.2807/1560-7917.ES.2021.26.49.2002005 | DOI Listing |
Math Biosci
January 2025
Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, Aveiro 3810-193, Portugal. Electronic address:
The COVID-19 pandemic has presented unprecedented challenges worldwide, necessitating effective modelling approaches to understand and control its transmission dynamics. In this study, we propose a novel approach that integrates asymptomatic and super-spreader individuals in a single compartmental model. We highlight the advantages of utilizing incommensurate fractional order derivatives in ordinary differential equations, including increased flexibility in capturing disease dynamics and refined memory effects in the transmission process.
View Article and Find Full Text PDFVision Res
January 2025
Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Space Science and Physics, Shandong University, Weihai 264209, China. Electronic address:
Changes in water, energy, and food (WEF) trade patterns may reshape water circulation patterns, leading to potential water supply and demand risks. Analysis of virtual water risk transmission characteristics and driving factors from the perspective of WEF trade is highly important for alleviating the risk of water shortages and promoting the efficient use of resources. In this paper, a set of methods for quantifying risk transmission values is constructed on the basis of China's interregional input-output model, and the key paths of interregional virtual water risk transmission caused by WEF trade are identified using innovative methods.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: The primary objective of this study was to examine whether ARID1A mutations confer a fitness advantage to gastric cancer from an immunological perspective, along with elucidating the underlying mechanism. Additionally, we aimed to identify the clinical potential of combining epigenetic inhibitors with immune checkpoint inhibitors to improve the efficacy of immunotherapy for gastric cancer.
Methods: The correlation between ARID1A gene expression and gastric cancer patient survival was analyzed using the GEO dataset GSE62254.
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!