Artificial compound eyes (ACEs) endowed with durable superhydrophobicity, wide field-of-view (FOV), and antireflection properties are extremely appealing in advanced micro-optical systems. However, the simple and high-efficiency fabrication of ACEs with these functions is still a major challenge. Herein, inspired by moth eyes, ACEs with hierarchical macro/micro/nano structures were fabricated using the combination of nanotip-focused electrohydrodynamic jet (NFEJ) printing and air-assisted deformation processes. The NFEJ printing enables the direct and maskless fabrication of hierarchical micro/nanolens arrays (M/NLAs) without intermediate steps. The introduction of M/NLAs on the eye surface significantly improves the water hydrophobic performance with a water contact angle of 161.1° and contact angle hysteresis (CAH) of 4.2° and generally decreases the reflectance by 51% in the wavelength range of 350-1600 nm in comparison to the macroeye without any structures. The contact angle remains almost unchanged, and the CAH slightly increases from 4.2° to 8.7° after water jet impact for 20 min, indicating a durable superhydrophobicity. Moreover, the results confirm that the durable superhydrophobic ACEs with antireflection properties exhibit excellent imaging quality and a large FOV of up to 160° without distortion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c17436 | DOI Listing |
Here we report a simple self-masking technique for fabricating bioinspired broadband antireflection coatings on both single-crystalline and multicrystalline silicon wafers with the assistance of a polyimide tape. Subwavelength-structured moth-eye nanopillars, which exhibit superior antireflection performance over a broad range of visible and near-IR wavelengths, can be patterned uniformly on the wafer surface by applying a chlorine-based reactive ion etching (RIE) process. The resulting random nanopillars show improved antireflection properties compared with ordered nanopillars templated by colloidal lithography under the same RIE conditions.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva CH-1211, Switzerland.
Moth-eye nanostructures, known for their biological antireflective properties, are formed by a self-assembly mechanism. Understanding and replicating this mechanism on artificial surfaces open avenues for the engineering of bioinspired multifunctional nanomaterials. Analysis of corneal nanocoatings from butterflies of the genus reveals a variety of nanostructures with uniformly strong antiwetting properties accompanied by varying antireflective functionalities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Antireflection (AR) coatings with mechanical robustness and superhydrophobic properties have wide potential applications in optical, electronic, and automotive fields. However, the fabrication of large-sized, robust, and multifunctional AR coatings on plastic/polymer substrates has been a challenging problem. In this study, we developed a bottom-up approach to produce mechanically robust, enhanced transmittance, and superhydrophobic coatings on poly(methyl methacrylate) (PMMA) substrate.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!