Study on the Roof Solar Heating Storage System of Traditional Residences in Southern Shaanxi, China.

Int J Environ Res Public Health

School of Electronic and Information Engineering, Ankang University, Ankang 725000, China.

Published: November 2021

Solar energy is a renewable, green, clean, and universal resource that has great potential in rural areas. Combining solar heating technology with building design to increase indoor thermal comfort in winter is an effective energy-saving and environmentally friendly approach. The factors affecting solar building heating mainly include two aspects; one is the lighting area of the building, and the other is the storage of building materials. By increasing the lighting area and using materials with good heat preservation and storage performance, the indoor temperature in winter can be effectively increased, and the heating time can be prolonged, thus decreasing the energy requirements of the building. In this paper, traditional houses in cold winter areas are selected as the research object, and a roof solar heating storage system is proposed. The method is to transform the opaque roof of the traditional houses into a transparent glass roof, and the thermal insulation and heat storage material HDPE is installed in the attic floorboards. The working principle of this system is to increase the amount of indoor solar radiation to raise the indoor temperature and make use of the thermal insulation performance of heat storage materials to prolong the indoor heating time. Through ANSYS software simulation, the heat transfer process, heat transfer mode, and temperature change of the system are analyzed, and the energy saving of the system is analyzed. The system can effectively raise the indoor temperature and has good energy-saving performance. The indoor temperature is raised by 5.8 °C, and the annual heat load of the building is reduced by 1361.92 kW·h, with a reduction rate of 25.02%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657260PMC
http://dx.doi.org/10.3390/ijerph182312600DOI Listing

Publication Analysis

Top Keywords

indoor temperature
16
solar heating
12
roof solar
8
heating storage
8
storage system
8
lighting area
8
performance indoor
8
heating time
8
traditional houses
8
thermal insulation
8

Similar Publications

Tight oil is a typical unconventional resource, and enhancing its recovery rate remains a challenge in current development efforts. In this study targeting the Daqing Fuyu tight oil reservoir, we combine a high-temperature and high-pressure long core physical simulation apparatus and a high-temperature and high-pressure online Nuclear Magnetic Resonance (NMR) testing system to conduct indoor simulation experiments on CO huff and puff in long cores. The results indicate that in the process, it is primarily the oil from micro-pores that is initially mobilized, but further along mobilization of fluids from a portion of sub-micro-pores and nanopores is enhanced, with an efficiency ranging from 25 to 33 %.

View Article and Find Full Text PDF

NH release during the snow evaporation process in typical cities in Northeast China.

Sci Rep

January 2025

Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, No.5088 Xincheng Road, Changchun, 130118, Jilin Province, China.

NH is the most important alkaline gas in the atmosphere and functions as a precursor to secondary ammonium salts. Therefore, identifying its sources and quantifying its emissions is imperative. NH represents a principal component of atmospheric particulate pollutants.

View Article and Find Full Text PDF

Efficient energy management and maintaining an optimal indoor climate in buildings are critical tasks in today's world. This paper presents an innovative approach to surrogate modeling for predicting indoor air temperature (IAT) in buildings, leveraging advanced machine learning techniques. At the core of this study is the application of Long Short-Term Memory (LSTM) networks for time-series modeling, which significantly enhances the capture of temporal dependencies in temperature predictions.

View Article and Find Full Text PDF

Fungal contamination in the air of hospital wards can affect the health of medical staff, patients, and caregivers. Through systematic analysis of the concentration, types, and particle size distribution characteristics of fungi in the air of wards in Wuhan, China, in 2023, it was found that there was no significant correlation between the concentration of fungi in the air of wards and the disease type and personnel density. The main influencing factors were temperature, humidity, and seasonal changes.

View Article and Find Full Text PDF

Because of the existence of moisture in indoor air, it is still a serious challenge to capture formaldehyde indoors with the metal-organic material Fe-HHTP-MOF. To explore the relationship between the structure and performance of Fe-HHTP-MOF in dry and humid air, molecular dynamics simulation was used to study the adsorption amount of Fe-HHTP-MOF for formaldehyde and water under different temperatures and adsorption pressures, as well as the adsorption amount of Fe-HHTP-MOF for formaldehyde in the presence of both water and formaldehyde, and the differences in adsorption of formaldehyde and water by Fe-HHTP-MOF were compared and analyzed when water coexisted. The results show that under single-component isothermal adsorption, the hydrogen bond energy formed by Fe-HHTP-MOF adsorbing HO molecules is much greater than the van der Waals energy formed by adsorbing HCHO molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!