Synthesis and Applications of Carbohydrate-Based Organocatalysts.

Molecules

Institut des Biomolécules Max Mousseron (IBMM-UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France.

Published: November 2021

Organocatalysis is a very useful tool for the asymmetric synthesis of biologically or pharmacologically active compounds because it avoids the use of noxious metals, which are difficult to eliminate from the target products. Moreover, in many cases, the organocatalysed reactions can be performed in benign solvents and do not require anhydrous conditions. It is well-known that most of the above-mentioned reactions are promoted by a simple aminoacid, l-proline, or, to a lesser extent, by the more complex cinchona alkaloids. However, during the past three decades, other enantiopure natural compounds, the carbohydrates, have been employed as organocatalysts. In the present exhaustive review, the detailed preparation of all the sugar-based organocatalysts as well as their catalytic properties are described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659088PMC
http://dx.doi.org/10.3390/molecules26237291DOI Listing

Publication Analysis

Top Keywords

synthesis applications
4
applications carbohydrate-based
4
carbohydrate-based organocatalysts
4
organocatalysts organocatalysis
4
organocatalysis tool
4
tool asymmetric
4
asymmetric synthesis
4
synthesis biologically
4
biologically pharmacologically
4
pharmacologically active
4

Similar Publications

Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is characterized by poor responsiveness to immune evasion and immunotherapy. RNA 7-methylguanine (m7G) modification plays a key role in tumorigenesis. However, the mechanisms by which m7G-modified RNA metabolism affects tumor progression are not fully understood, nor is the contribution of m7G-modified RNA to the CRC immune microenvironment.

View Article and Find Full Text PDF

Epilepsy and brain health: a large prospective cohort study.

J Transl Med

December 2024

Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China.

Background: Epilepsy, as a chronic noncommunicable disease with recurrent seizures, may be a marker of deterioration or alteration in other underlying neurological diseases. This study aimed to investigate the relationship of epilepsy with brain function, other common brain disorders, and their underlying mechanisms.

Methods: The study was based on clinical diagnostic and test data from 426,527 participants in the UK Biobank, of whom 3,251 were diagnosed with epilepsy at baseline.

View Article and Find Full Text PDF

Two new strains of Streptomyces with metabolic potential for biological control of pear black spot disease.

BMC Microbiol

December 2024

State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China.

Background: Pear black spot is caused by Alternaria tenuissima. It is one of the diseases of concern limiting pear production worldwide. Existing cultivation methods and fungicides are not sufficient to control early blight.

View Article and Find Full Text PDF

Rapamycin is an important natural macrolide antibiotic with antifungal, immunosuppressive and antitumor activities produced by Streptomyces rapamycinicus. However, their prospective applications are limited by low fermentation units. In this study, we found that the exogenous aromatic amino acids phenylalanine and tyrosine could effectively increase the yield of rapamycin in industrial microbial fermentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!