Boron Doped Diamond for Real-Time Wireless Cutting Temperature Monitoring of Diamond Coated Carbide Tools.

Materials (Basel)

Department of Materials and Ceramics Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.

Published: November 2021

Among the unique opportunities and developments that are currently being triggered by the fourth industrial revolution, developments in cutting tools have been following the trend of an ever more holistic control of manufacturing processes. Sustainable manufacturing is at the forefront of tools development, encompassing environmental, economic, and technological goals. The integrated use of sensors, data processing, and smart algorithms for fast optimization or real time adjustment of cutting processes can lead to a significant impact on productivity and energy uptake, as well as less usage of cutting fluids. Diamond is the material of choice for machining of non-ferrous alloys, composites, and ultrahard materials. While the extreme hardness, thermal conductivity, and wear resistance of CVD diamond coatings are well-known, these also exhibit highly auspicious sensing properties through doping with boron and other elements. The present study focuses on the thermal response of boron-doped diamond (BDD) coatings. BDD coatings have been shown to have a negative temperature coefficient (NTC). Several approaches have been adopted for monitoring cutting temperature, including thin film thermocouples and infrared thermography. Although these are good solutions, they can be costly and become impractical for certain finishing cutting operations, tool geometries such as rotary tools, as well as during material removal in intricate spaces. In the scope of this study, diamond/WC-Co substrates were coated with BDD by hot filament chemical vapor deposition (HFCVD). Scanning electron microscopy, Raman spectroscopy, and the van der Pauw method were used for morphological, structural, and electrical characterization, respectively. The thermal response of the thin diamond thermistors was characterized in the temperature interval of 20-400 °C. Compared to state-of-the-art temperature monitoring solutions, this is a one-step approach that improves the wear properties and heat dissipation of carbide tools while providing real-time and in-situ temperature monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658068PMC
http://dx.doi.org/10.3390/ma14237334DOI Listing

Publication Analysis

Top Keywords

temperature monitoring
12
cutting temperature
8
carbide tools
8
thermal response
8
bdd coatings
8
diamond
6
cutting
6
temperature
6
tools
5
boron doped
4

Similar Publications

Objective: This study evaluated dentin morphology and pulp cavity temperature changes during nanosecond‑ and microsecond‑pulse Er, Cr: YSGG laser debonding restoration and residual adhesive.

Materials And Methods: Ten caries-free teeth had their enamel removed perpendicular to the long axis, followed by bonding of glass ceramic restorations. The samples were randomly divided into two groups and subjected to Er, Cr: YSGG laser (3 mJ, 100 Hz, 100 ns), (3 mJ, 100 Hz, 150 µs) for debonding of restoration and residual adhesive on dentin surfaces.

View Article and Find Full Text PDF

Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma.

Cells

December 2024

Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany.

Traumatic brain injury (TBI) remains one of the leading causes of death. Because of the individual nature of the trauma (brain, circumstances and forces), humans experience individual TBIs. This makes it difficult to generalise therapies.

View Article and Find Full Text PDF

Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.

View Article and Find Full Text PDF

The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.

View Article and Find Full Text PDF

It is crucial to elucidate the impact of climate change on wheat production in China. This article provides a review of the current climate change scenario and its effects on wheat cultivation in China, along with an examination of potential future impacts and possible response strategies. Against the backdrop of climate change, several key trends emerge: increasing temperature during the wheat growing season, raising precipitation, elevated CO concentration, and diminished radiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!