MOFs exhibit inherent extraordinary features for diverse applications ranging from catalysis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via "post-synthetic modification" mainly by changing linkers (by altering the type, length, functionality, and charge of the linkers) or node components within the MOF framework. Additionally, efforts are aimed towards manipulating the size and morphology of crystallite domains in the MOFs, which are aimed at enlarging their applications window. Today's knowledge of artificial intelligence and machine learning has opened new pathways to elaborate multiple nanoporous complex MOFs and nano-MOFs (NMOFs) for advanced theranostic, clinical, imaging, and diagnostic purposes. Successful accumulation of a photosensitizer in cancerous cells was a significant step in cancer therapy. The application of MOFs as advanced materials and systems for cancer therapy is the main scope beyond this perspective. Some challenging aspects and promising features in MOF-based cancer diagnosis and cancer therapy have also been discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658485PMC
http://dx.doi.org/10.3390/ma14237277DOI Listing

Publication Analysis

Top Keywords

cancer therapy
16
mofs
7
cancer
5
metal-organic frameworks
4
frameworks mofs
4
mofs cancer
4
therapy
4
therapy mofs
4
mofs exhibit
4
exhibit inherent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!