Poly(dimethylsiloxane) has attracted much attention in soft lithography and has also been preferred as a platform for a photochemical reaction, thanks to its outstanding characteristics including ease of use, nontoxicity, and high optical transmittance. However, the low stiffness of PDMS, an obvious advantage for soft lithography, is often treated as an obstacle in conducting precise handling or maintaining its structural integrity. For these reasons, a Glass-PDMS-Glass structure has emerged as a straightforward alternative. Nevertheless, several challenges are remaining in fabricating Glass-PDMS-Glass structure through the conventional PDMS patterning techniques such as photolithography and etching processes for master mold. The complicated techniques are not suitable for frequent design modifications in research-oriented fields, and fabrication of perforated PDMS is hard to achieve using mold replication. Herein, we utilize the successive laser pyrolysis technique to pattern thin-film PDMS for microfluidic applications. The direct use of thin film at the glass surface prevents the difficulties of thin-film handling. Through the precise control of photothermal pyrolysis phenomena, we provide a facile fabrication process for perforated PDMS microchannels. In the final demonstration, the laminar flow has been successfully created owing to the smooth surface profile. We envision further applications using rapid prototyping of the perforated PDMS microchannel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658685 | PMC |
http://dx.doi.org/10.3390/ma14237275 | DOI Listing |
Bioengineering (Basel)
July 2024
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Gregoriou Ε' and 27 Neapoleos Str., Aghia Paraskevi, 15341 Athens, Greece.
Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome of biomimetic systems, combining the advantages of microfluidic technology with cellular biology to surpass conventional 2D/3D cell culture techniques and animal testing. Bone-marrow-on-a-chip (BMoC) devices are usually focused only on the maintenance of the hematopoietic niche; otherwise, they incorporate at least three types of cells for on-chip generation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
This study aims to develop a strategy for the fabrication of multilayer nanopatterns through sequential self-assembly of lamella-forming polystyrene--polydimethylsiloxane (PS--PDMS) block copolymer (BCP) from solvent annealing. By simply tuning the solvent selectivity, a variety of self-assembled BCP thin-film morphologies, including hexagonal perforated lamellae (HPL), parallel cylinders, and spheres, can be obtained from single-composition PS--PDMS. By taking advantage of reactive ion etching (RIE), topographic SiO monoliths with well-ordered arrays of hexagonally packed holes, parallel lines, and hexagonally packed dots can be formed.
View Article and Find Full Text PDFJ Control Release
September 2023
The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. Electronic address:
Oral delivery of macromolecules remains highly challenging due to their rapid degradation in the gastrointestinal tract and poor absorption across the tight junctions of the epithelium. In the last decade, researchers have investigated several medical devices to overcome these challenges using various approaches, some of which involve piercing through the intestine using micro and macro needles. We have developed a new generation of medical devices called self-unfolding proximity enabling devices, which makes it possible to orally deliver macromolecules without perforating the intestine.
View Article and Find Full Text PDFMembranes (Basel)
August 2022
St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
Purification and concentration of bioalcohols is gaining new status due to their use as a promising alternative liquid biofuel. In this work, novel high-performance asymmetric membranes based on a block copolymer (BCP) synthesized from polydimethylsiloxane (PDMS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) were developed for enhanced pervaporation dehydration of ethanol. Improvement in dehydration performance was achieved by obtaining BCP membranes with a "non-perforated" porous structure and through surface and bulk modifications with graphene oxide (GO).
View Article and Find Full Text PDFMicromachines (Basel)
January 2022
College of Medicine and Biological Information Engineering, Northeastern University, 195 Innovation Road, Shenyang 110016, China.
Sonoporation employs ultrasound accompanied by microbubble (MB) cavitation to induce the reversible disruption of cell membranes and has been exploited as a promising intracellular macromolecular delivery strategy. Due to the damage to cells resulting from strong cavitation, it is difficult to balance efficient delivery and high survival rates. In this paper, a traveling surface acoustic wave (TSAW) device, consisting of a TSAW chip and a polydimethylsiloxane (PDMS) channel, was designed to explore single-cell sonoporation using targeted microbubbles (TMBs) in a non-cavitation regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!