Reaching simultaneously high mechanical strength and low electrical resistivity is difficult as both properties are based on similar microstructural mechanisms. In our previous work, a new parameter, the tensile strength-over-electrical resistivity ratio, is proposed to evaluate the matching of the two properties in Cu alloys. A specific ratio of 310 × 10 MPa·Ω·m, independent of the alloy system and thermal history, is obtained from Cu-Ni-Mo alloys, which actually points to the lower limit of prevailing Cu alloys possessing high strength and low resistivity. The present paper explores the origin of this specific ratio by introducing the dual-phase mechanical model of composite materials, assuming that the precipitate particles are mechanically mixed in the Cu solid solution matrix. The strength and resistivity of an alloy are respectively in series and parallel connections to those of the matrix and the precipitate. After ideally matching the contributions from the matrix and the precipitate, the alloy should at least reach half of the resistivity of pure Cu, i.e., 50%IACS, which is the lower limit for industrially accepted highly conductive Cu alloys. Under this condition, the specific 310 ratio is related to the precipitate-over-matrix ratios for strength and resistivity, which are both two times those of pure Cu.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658687 | PMC |
http://dx.doi.org/10.3390/ma14237150 | DOI Listing |
J Biomed Mater Res B Appl Biomater
January 2025
Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea.
Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (-45°/45°, 0°/90°), and concentric (CON).
View Article and Find Full Text PDFClin Chem Lab Med
January 2025
70777 TUBITAK National Metrology Institute (TUBITAK UME), Kocaeli, Türkiye.
Objectives: An analytical protocol based on isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS), which includes a peptide-based calibration strategy, was developed and validated for the determination of cardiac troponin I (cTnI) levels in clinical samples. Additionally, the developed method was compared with a protein-based calibration strategy, using cTnI serving as a model for low-abundant proteins. The aim is to evaluate new approaches for protein quantification in complex matrices, supporting the metrology community in implementing new methods and developing fit-for-purpose SI- traceable peptide or protein primary calibrators.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
Two-dimensional (2D) PtSe has attracted significant attention in recent years owing to its exceptional optoelectronic properties. Currently, the contact interface of the PtSe/bulk 2D-three-dimensional (3D) p-n heterojunction exhibits numerous defects. Moreover, the n-type bulk materials serve as a carrier transport layer, resulting in serious recombination losses and deterioration of device stability.
View Article and Find Full Text PDFFront Physiol
December 2024
Department of Health Sciences, Public University of Navarre (UPNA), Pamplona, Spain.
In this quasi-experimental before-after trial, we investigated the effects of a high-intensity, low-repetition inspiratory muscle training (HI-LRMT) protocol on respiratory muscle strength in instrumental musicians. In addition, was to estimate the prevalence of "non-responders" (NRs) in terms of muscle force after intervention. Healthy musicians ( = 48) were divided into 2 groups: HI-LRMT ( = 33) and a control group that did not train (CG, = 15).
View Article and Find Full Text PDFNano Lett
January 2025
National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
Wood particle boards are massively used in construction and household products. But they often raise health and environmental concerns because of the formaldehyde-based adhesives. More sustainable and high-strength particle boards are developed on a bio-based materials or their derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!