A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders. | LitMetric

AI Article Synopsis

  • The study aims to develop machine intelligence platforms to help predict the risk of dangerous changes in oral lesions, specifically oral leukoplakia and oral lichenoid lesions, using patient data.
  • Four advanced learning algorithms and one traditional statistical method were tested on a group of 1098 patients, focusing on features from their electronic health records to improve prediction accuracy.
  • The results showed that the DeepSurv model outperformed others in stability and predictive accuracy during validation, suggesting its potential integration into clinical practice for making better decisions regarding patient care.

Article Abstract

Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with oral white lesions from two institutions were included in this study. In all, 26 features available from electronic health records were used to train four learning algorithms-Cox-Time, DeepHit, DeepSurv, random survival forest (RSF)-and one standard statistical method-Cox proportional hazards model. Discriminatory performance, calibration of survival estimates, and model stability were assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of the averaged c-index and IBS following training cross-validation. This study found that DeepSurv (c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based on discrimination and calibration following internal validation. However, DeepSurv was more stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for discrimination (c-index-0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03). We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall, time-to-event models are successful in predicting the malignant transformation of oral leukoplakia and oral lichenoid lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657223PMC
http://dx.doi.org/10.3390/cancers13236054DOI Listing

Publication Analysis

Top Keywords

malignant transformation
12
transformation oral
12
oral malignant
8
malignant disorders
8
clinical practice
8
oral leukoplakia
8
leukoplakia oral
8
oral lichenoid
8
lichenoid lesions
8
survival estimates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!