Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology.

Cancers (Basel)

Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.

Published: December 2021

Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor-immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor-immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656483PMC
http://dx.doi.org/10.3390/cancers13236052DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
microfluidic technology
8
tumor-immune dynamics
8
resistance immunotherapy
8
mechanisms response
8
response resistance
8
going flow
4
flow modeling
4
modeling tumor
4
microenvironment microfluidic
4

Similar Publications

Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.

Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).

View Article and Find Full Text PDF

Background: Nasopharyngeal cancer (NPC) is a common head and neck malignant tumor, which is difficult to treat at the advanced NPC due to its occult and high metastatic potential to the cervical lymph nodes and distant organs. Low-dose radiotherapy (LDRT) is increasingly being investigated for potential cancer treatment. When combined with immune checkpoint inhibitors, LDRT has been shown to significantly improve the immune microenvironment of tumors, thereby promote the immune attack on tumor cells.

View Article and Find Full Text PDF

Background: Tumor microvasculature is an important component of the tumor microenvironment (TME), and it has been reported that tumor microvasculature induces TME to become immunosuppressive via vascular endothelial growth factor. However, the significance of this in adenocarcinoma with epidermal growth factor receptor (EGFR) common mutations has not been fully investigated.

Methods: We analyzed 262 patients with adenocarcinoma harboring EGFR common mutations who underwent surgery at Kyushu University Hospital between 2006 and 2021.

View Article and Find Full Text PDF

Role of Acorus calamus extract in reducing exosome secretion by targeting Rab27a and nSMase2: a therapeutic approach for breast cancer.

Mol Biol Rep

January 2025

Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.

Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.

View Article and Find Full Text PDF

Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!