Purpose: To compare the efficacy of CT-on-rails versus in-room CBCT for daily adaptive proton therapy.

Methods: We analyzed a cohort of ten head-and-neck patients with daily CBCT and corresponding virtual CT images. The necessity of moving the patient after a CT scan is the most significant difference in the adaptation workflow, leading to an increased treatment execution uncertainty . It is a combination of the isocenter-matching and random patient movements induced by the couch motion . The former is assumed to never exceed 1 mm. For the latter, we studied three different scenarios with = 1, 2, and 3 mm. Accordingly, to mimic the adaptation workflow with CT-on-rails, we introduced random offsets after Monte-Carlo-based adaptation but before delivery of the adapted plan.

Results: There were no significant differences in accumulated dose-volume histograms and dose distributions for = 1 and 2 mm. Offsets with = 3 mm resulted in underdosage to CTV and hot spots of considerable volume.

Conclusion: Since typically does not exceed 2 mm for in-room CT, there is no clinically significant dosimetric difference between the two modalities for online adaptive therapy of head-and-neck patients. Therefore, in-room CT-on-rails can be considered a good alternative to CBCT for adaptive proton therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656713PMC
http://dx.doi.org/10.3390/cancers13235991DOI Listing

Publication Analysis

Top Keywords

adaptive proton
12
ct-on-rails versus
8
versus in-room
8
in-room cbct
8
daily adaptive
8
proton therapy
8
therapy head-and-neck
8
head-and-neck patients
8
adaptation workflow
8
ct-on-rails
4

Similar Publications

Comprehensive Analysis of the NHX Gene Family and Its Regulation Under Salt and Drought Stress in Quinoa ( Willd.).

Genes (Basel)

January 2025

Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.

: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa ( Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms.

View Article and Find Full Text PDF

Approximately 36% of patients with cervical cancer present with regional nodal metastasis at diagnosis, which is associated with adverse survival outcomes after definitive treatment. In the modern era of chemoradiotherapy (CRT) and image-guided adaptive brachytherapy (IGABT), where excellent local control is achieved for patients with locally advanced cervical cancer (LACC), nodal failure remains a major challenge to cure. To optimize treatment outcomes for node-positive LACC and reduce the incidence of nodal failure, various treatment approaches have been explored, including methods of surgical nodal staging or dissection, RT dose escalation strategies, such as intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost (SIB) to involved nodes, and elective treatment of subclinical para-aortic (PAO) disease.

View Article and Find Full Text PDF

The impact of arbuscular mycorrhizal colonization on flooding response of .

Front Plant Sci

January 2025

Department of General and Applied Botany, Institute of Biology, Leipzig University, Leipzig, Germany.

Climate change is expected to lead to an increase in precipitation and flooding. Consequently, plants that are adapted to dry conditions have to adjust to frequent flooding periods. In this study, we investigate the flooding response of , a Mediterranean plant adapted to warm and dry conditions.

View Article and Find Full Text PDF

Tumor-nerve interactions in cancer regulation and progression.

Cancer Lett

January 2025

Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Proton-Therapy, Shanghai, 201801, China. Electronic address:

Tumor-nerve interactions play a critical role in tumor progression, metastasis, and treatment resistance, redefining our understanding of the tumor microenvironment. This review provides a comprehensive analysis of how the peripheral and central nervous systems contribute to cancer biology, focusing on mechanisms of neural invasion, immune evasion, and tumor adaptation. It has highlighted the emerging potential of repurposing nervous system-targeted drugs originally developed for neurodegenerative and autoimmune diseases as innovative cancer therapies.

View Article and Find Full Text PDF

Background: In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!