An Easy Route to Aziridine Ketones and Carbinols.

Int J Mol Sci

Department of Pathology, Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia.

Published: December 2021

-Dimethylaziridine-2-carboxamides react with organolithium reagents yielding 2-aziridinylketones. The reaction with one equivalent of organolithium compound is selective to amide carbonyl at a low (-78 °C) temperature. These ketones, in reaction with organolithium reagents, give symmetrical and unsymmetrical aziridinyl carbinols. The usage of excess phenyllithium may serve as a special N-Boc-protecting group cleavage method for acid-sensitive substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658269PMC
http://dx.doi.org/10.3390/ijms222313145DOI Listing

Publication Analysis

Top Keywords

organolithium reagents
8
easy route
4
route aziridine
4
aziridine ketones
4
ketones carbinols
4
carbinols -dimethylaziridine-2-carboxamides
4
-dimethylaziridine-2-carboxamides react
4
react organolithium
4
reagents yielding
4
yielding 2-aziridinylketones
4

Similar Publications

Ion Hydration Enables Generality in Asymmetric Catalysis: Desymmetrization to P-Stereogenic Triarylphosphine Derivatives.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore.

Asymmetric synthesis relies on seamless transmission of stereochemical information from a chiral reagent/catalyst to a prochiral substrate. The disruption by substrates' structural changes presents a hurdle in innovating generality-oriented asymmetric catalysis. Here, we report a strategy for substrate adaptability by exploiting a fundamental physicochemical phenomenon-ion hydration, in developing remote desymmetrization to access P-stereogenic triarylphosphine oxides and sulfides.

View Article and Find Full Text PDF

A strategy for the synthesis of 1--substituted thioglycals was developed from cyclic carbohydrate-derived ketene dithioacetals in a four-step sequence. The corresponding thioglycals, in two carbohydrate series, were first obtained by removal of the exocyclic glycosyl sulfoxide, followed by treatment with an organolithium reagent. Various electrophilic groups were introduced onto the thioglycal double bond after deprotonation and formation of a glycosyl lithium intermediate.

View Article and Find Full Text PDF

Nickel-Catalyzed Difluoroalkylation of β,γ-Unsaturated α-Amino Nitrile Derived Lithium Reagents.

Angew Chem Int Ed Engl

November 2024

Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.

Organolithium reagents, known for their low cost, ready availability, and high reactivity, allow fast cross-coupling under ambient conditions. However, their direct cross-coupling with fluoroalkyl electrophiles remains a formidable challenge due to the easy formation of thermo-unstable fluoroalkyl lithium species during the reaction, which are prone to decomposition via rapid α/β-fluoride elimination. Here, we exploit heteroatom-stabilized allylic anions to harness the exceptional reactivity of organolithium reagents, enabling the compatibility of difluoroalkyl halides and facilitating versatile and precise fluorine functionality introduction under mild conditions.

View Article and Find Full Text PDF

Advancing the use of air-sensitive polar organometallic Grignard and organolithium reagents under more environmentally benign conditions, here we report the addition of these reagents to α,β-unsaturated ketones and aldehydes using the deep eutectic solvent (DES) choline chloride (ChCl): glycerol (Gly) (1 : 2), under air. Reactions occur at room temperature within seconds with excellent regioselective control. Furthering understanding of how these C-C bond forming processes take place in these reaction media, we have explored the surface concentration of the organic substrate (chalcone) in DES using interfacial tension and neutron reflectivity measurements, finding that chalcone is concentrated at the DES-hydrocarbon interface compared to the bulk concentration, although the interfacial chalcone concentration is still relatively low in this system.

View Article and Find Full Text PDF

Non-covalent interactions, including the coordination of an organolithium reagent by a directing group and the steric hindrance from substituents, play a crucial role in determining the selectivity of metalation reactions. Here, we demonstrate the effective utilization of steric interactions for flipping the lithiation of 4-dimethylaminopyridine (DMAP). Introduction of a MeSi substituent to the position 1 of DMAP or simple complexation with t-BuLi allows selective C3-lithiation, due to the steric hindrance of a C2-H bond by the bulky moiety at the pyridine nitrogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!