One of the most important risk factors for developing chronic kidney disease (CKD) is diabetes. To assess the safety and efficacy of potential drug candidates, reliable animal models that mimic human diseases are crucial. However, a suitable model of diabetic kidney disease (DKD) is currently not available. The aim of this study is to develop a rat model of DKD by combining streptozotocin and nicotinamide (STZ/NAD) with oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration. Diabetes was induced in male Wistar rats by intravenous injection of 65 mg/kg STZ, 15 min after intraperitoneal injection of 230 mg/kg NAD. Rats were assigned to different groups receiving L-NAME (100 mg/kg/day) (STZ/NAD/L-NAME) or vehicle (STZ/NAD) for a period of 9 or 12 weeks by daily oral gavage. All rats developed hyperglycemia. Hyperfiltration was observed at the start of the study, whereas increased serum creatinine, albumin-to-creatinine ratio, and evolving hypofiltration were detected at the end of the study. Daily L-NAME administration caused a rapid rise in blood pressure. Histopathological evaluation revealed heterogeneous renal injury patterns, which were most severe in the STZ/NAD/L-NAME rats. L-NAME-induced NO-deficiency in STZ/NAD-induced diabetic rats leads to multiple characteristic features of human DKD and may represent a novel rat model of DKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657539 | PMC |
http://dx.doi.org/10.3390/ijms222312767 | DOI Listing |
Basic Clin Pharmacol Toxicol
February 2025
Sci Rep
January 2025
Anatomy Department, College of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China.
Hypertension is one of the most serious chronic diseases. This study will focus on the systemic antihypertensive mechanisms of 5,7-dihydroxyflavone from in silico simulations to in vivo validations. In-silico studies were applied by network pharmacology, molecular docking, and molecular dynamic simulation.
View Article and Find Full Text PDFTheranostics
January 2025
Department of neurology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea.
It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.
View Article and Find Full Text PDFPharmacol Res Perspect
February 2025
School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK.
Metabolites
December 2024
Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Eliseo Ramírez Ulloa 400, Doctores Pachuca, Pachuca 42090, Hidalgo, Mexico.
Hypertension is one of the leading causes of premature death worldwide. Despite advances in conventional treatments, there remains a significant need for more effective and natural alternatives to control hypertension. In this context, sprouted barley extracts have emerged as a potential therapeutic option.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!