In this paper, a graphene-based THz metamaterial has been designed and characterized for use in sensing various refractive index profiles. The proposed single-band THz sensor was constructed using a graphene-metal hybridized periodic metamaterial wherein the unit cell had a footprint of 1.395λ × 1.395λ and resonated at 4.4754 THz. The realized peak absorption was 98.88% at 4.4754 THz. The sensitivity of the proposed metamaterial sensor was estimated using the absorption characteristics of the unit cell. The performance of the sensor was analyzed under two different categories, viz. the random dielectric loading and chemical analytes, based on the refractive index. The proposed THz sensor offered a peak sensitivity of 22.75 GHz/Refractive Index Unit (RIU) for the various sample loadings. In addition, the effect of the sample thickness on the sensor performance was analyzed and the results were presented. From the results, it can be inferred that the proposed metamaterial THz sensor that was based on a refractive index is suitable for THz sensing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662438PMC
http://dx.doi.org/10.3390/s21238151DOI Listing

Publication Analysis

Top Keywords

thz sensor
12
unit cell
8
44754 thz
8
proposed metamaterial
8
based refractive
8
sensor
7
thz
7
refractive
4
refractive index-based
4
index-based terahertz
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!